AD=A111 350 KENTUCKY UNIV LEXINGTON OEPT OF ELECTRICAL ENGINEERING F/6 9/2
INFERENTIAL PROCESSOR. (U)
JAN 82 F M BROWN» D K TAYLOR AFOSR-BI-OI!S
UNCLASSIFIED AFOSR=-TR-82~0037

fli2

i

FEE
B
e~ =
N

I

__
LI R
]
w
o

TORT
rr
—
i
=
= |~
= IS

|| |.
[
F—]
=

lls

o

JL25 flls pee

MICROCOPY RESOLUTION‘ TEST CHART

AFOSR.TR- 82 -0087 .,

INFERENTIAL PROCESSOR

mp—————

ADA111550

FINAL REPORT

for the period 1 April to 30 November, 1981
under Grant AFOSR 81-0116
Air Forcs Office of Scientific Research

T T T IR Rl e i e + it R R R i

A b AN SR s, LA o

Frank M. Brown ‘ I
Doneld K, Taylor i

Department of Electrical Engineering 13
University of Kentucky i
Lexington, Kentucky 1

i
E mmsm ‘

Appeoved for publio releans §

_.z a 3 0 2 0 6 l &lstribuu@ @mg _.

pe

- ‘ «

- e NG WASSELRD -~
! SEC" 7Y SLASLFICAYION OF THIS PAGE (When Dma‘E:m-lm:) .
" PR e - o - t
‘ READ INSTRUCTIONS
= REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. m‘l‘s&'dﬁ 2. GOVTY ACCESSION NO.| 3. RECIPIENT'S CATALCG NUMBER ,
4. TITLE {and Subtitle) S. TYPE OF REPORT & PERIOD COVERED e
! INFERENTIAL PROCESSOR
‘. FINAL, 1 APR _81-30 NOV 81
! 6. PERFORMING ORG. REPORT NUMBER
i
S
, \ 7. AUTHOR(s) 8 CONTRACT OR GRANT NUMBE R(s),
Frank ™. Brown and Donald K. Taylor AFQOSR-81-0115
i 9. PERFORMING QRGANIZATION NAME AND ADDRESS. 19. PROGRAM ELEMENT. PROJECT, TASK
- Department of Electrical Engineering AREA & WORK UNIT NUMBERS
t . . - - -
- University of Kentucky 6L102F; 2304/A7
Lexingron KY 40506
1. CONTROLLING OFFICE NAME AND ADDRESS, . 12. REPORT OATE —_— H
‘lathematical & Information Sciences Directorate |JAN 1982 2
: Alr Force Office of Scientific Research T WOWGER GF FAGES i
b Boliing AFB DC 20332 128 4
i 14, MONITORING AGENCY NAME & ADDRESS(! different from (antroiling Otlice) 15. SECURITY CLASS. (of thia reporr)
‘ UNCLASSIFIED S
s 134, DECLASSIFICATION, DOWNGRADING
. SCHEDULE .
v A -
, 16. DISTRIBUTION STATEMENT (of thiz Report) P
g - . . . N N N .
spproved {or public release; distribution unlimited. ‘

3

ST

3 17. DISTRIBUTION STATEMENT (of the abstract entesed in Block 20 it Jillereat from R..,,'_,,,:,

18. SUPPLEMENTARY NOTES

» W
[0
o 2]
» .-
N k"b-
| S
_ 1eter
19. XEY WCROS (Continue on reverse side if necessary and 1dent. iy vy hlock nusber) !‘_ v
o
[y L 4
P
b
%
I
Hall
ZO4ABSTRAC' JCuntinue on reverse side U necessary and idota .1y b,.blm‘k Aumties R .] .“'\:,'
tenulte are presented concerning the design and application of an inferent i+l -l
| » . . 2 . . [-
processor, a digital machine organized to procese logical data at hipgh rate:s -of] g
&
apeed, wWnen coupled to a general-=purpose computer the inferential processor
would oenabi¢ reasoning tasks 'c be rarried out rapid.v and with little program- ‘
nang »ffori. Specific research-efforts discussed in 'uis report are (al mech- -—
1 arized inference in Boolean systems, (h) functional -dediction, and {c) interon<
toal analy:sis of relational dnmbases.4\
2 FORM]473 ,
‘ DD EDITION OF ! NOV 68 1S OBSOLETE / - .
' IAN 73 UNZLASSIFIED .

o

SECURITY CLASSIFCATION OF TNIS PAGE (When Date Entered) !

A

TP T R T R N AN IGI SR T N TP | e, ¢ - ——

INFERENTIAL PROCESSOR

FINAL REPORT

for the period 1 April to 30 November, 1981
under Grant AFOSR-81-0115
Air Force Office of Scientific Research

Frank M. Brown

Donald K. Taylor

Department of Electrical Engineering
University of Kentucky
Lexington, Kentucky
40506

January, 1982

AIR PORCE OFFICE OT SATEYTTTTC RESEARCH (AFSC)

1
¥

mf:’?\'fliE Ov TE{I}L‘;. ‘ : \: - o rayiewsd 3nd is
steenglr L o = T oae1z.
epproveld fov 1 B Y
Digtributicr i n
YATTHEN J. KERPEL
Chlef,TechnicalInformntionDivision

v

RPN
Jim otte

v g e el

e a,

PART A

STUDIES ON INFERENTIAL PROCESSING

F. M. Brown

L ar

FPPIRLY) S

e b e —
5

FOREWORD

This Final Report presents the results of an eight-month
project on the design and application of an inferentiail
processor. The work on this project, conducted under Grant AFOSR
81-0115, commenced on 1 April 1981 and was completed on 30 Novem-
ber, 1981,

The research was carried out in the Department of Electrical
Engineering at the University of Kentucky. Those principally
involved were F, M. Brown (princiral investigator), D. K. Taylor,
and M. R. Rowlette; the latter two are graduate students who were

supported by funds provided by the University of Kentucky.

Accession wop
NTIS LT S

RTIC Taz
Unnnnnnn~vd
J:l;‘:tific::tion

Distr t P]
Av LY Indes
- Lior T
R
1

AT T P T FN A e T LA Y P U AR T MO o~ e s 1 <1n

A ——

| e—

. ABSTRACT

Results are presented concerning the design and application
of an inferential processor, a digital machine organized to
Process logical data at high rates of speed. When coupled to a
general-purpose digital computer, the inferential processor would
enable reasoning tasks to be carried out rapidly and with little
programming effort. Specific research-efforts discussed in this
report are (a) mechanized inference in Boolean systems, (b)
functional deduction, and (c) inferential analysis of relational

databases.

TABLE OF CONTENTS

| Section Page
& I. INTRODUCTION o ¢ o o o o o o o s o o o o o o s o s 1
;1 References . o« o o« ¢ ¢ o o o ¢ o o o ¢ s o o 4
' 1I. LOGICAL COMPUTERS « & o o o o o o o o o o o o o o 5
. Refe:ences ® @ @ o & e o o & & 0 » * & ¢ o o 9
f III. ORGANIZATION OF THE INFERENTIAL PROCESSOR 13
& Principal Components . « o« s o o ¢ o o o o o 14
3 Major Phases of Operation . « ¢« ¢ « ¢ o o ¢ o 15
K References . o « « o« o o« « o o o o o s s o o 15
i Iv. MECHANIZED INFERENCE IN BOOLEAN SYSTEMS« . 16
-3 Review of Elementary Properties « « ¢« « ¢ o 16
B Boolean SYSteMS « o o o o o ¢« o ¢ o o ¢ » o o 16
RedUCtion . o ¢ o« « ¢ ¢ o o o o o s o o o o o 17

3“ BOOIQan Relations e 6 e ¢ o 9 ¥ & e & o 9 °o o 19
' Eliminants =« o ¢ o ¢ ¢ ¢ o o o o s ¢ o o o o 20

: Elimination « ¢« ¢ ¢ ¢ o ¢ o ¢ o o o o s ¢ o o 25
The Extended Verification Theorem . . « « « &« 28

Poretsky's Law Of FOIMS . & o & o ¢ o o o o & 30

Refetences e @ ® o o 5 ® & ®© 9 & 8 & e o °o o 31

4 V. FUNCTIONAL DEDUCTION ¢ o o e o s o a o o o o e 32
b Functional Deduc1b111ty ¢ ¢ e o o s s o s o o 33
p Minimal Determining Subsets 34

Circuit Design Based on Functional Deduction 38
References e 6 6 o @ o6 © o o @ ® o ® o o e o 44

iii

I. INTRODUCTION

The objective of the research described in this report has
been to investigate the design and application of an inferentiai
processor, a machine specialized for rapid processing of Boolean
(i.e., propositional) data. This research is part of a longer-
term effort to mechanize a new approach to reasoning in
propositional logic., The basic ideas underlying this approach
have been worked out over a period of several years; the practi-
cal implementation of those ideas was first undertaken in 1980,
however, while the principal investigator was at the Air Force
Avionics Laboratory under the sponsorship of the USAF/SCEEE Sum-

mer Faculty Research Program,

The proposed inferential processor, which is intended to
augment the computational power of a general-purpose computer, is
to be 2 high-speed reasoning system having very general capa-
bility within the domain of propositional logic. It may be imple-
mented either by microprogramming a general-purpose computer or
by attaching to such a computer a special-purpose processor; the

latter implementation (1] is assumed in this report.

Our research during the grant-period has been organized into

the following tasks:

l. Mechanized Inference in Boolean Systems (F.M. Brown);
2. Punctional Deduction (F.M. Brown);

3, Boolean Analysis of Relational Databases (D.K. Taylor);

4. Simulation of the Inferential Processor (M.R. Rowlette).

e e,

The foregoing research-tasks were undertaken as eight-month
efforts promising the greatest progress toward the objectives
stated in our proposal. We present in this report the results of
the first three tasks; the results of the final task are to

appear in an M.S. thesis which is currently underway.

The objective of the first task, Mechanized Inference in
Boolean Systems, was to develop an organized and coherent theory
of Boolean analysis. The basic inferential operations on systems
of Boolean equations were studied, terminology was established,
and properties fundamental to the operation of the inferential
processor were proved. The objects of the first task were princi-
pally those of clarification, terminology, and proof. In the se-
cond task, Functional Deduction, our object was to investigate a
new application of the processor, one which had only been sket-
ched in our previous research [2]), We believe functional deduc-
tion to be a fundamental operation in Boolean analysis; it is the
inverse, essentially, of the much-studied problem of solving
Boolean equations, The results obtained under this task enable
functional deduction to be performed rapidly and efficiently by
the inferential processor. To study its essential features and
illustrate its practical utility, we have zpplied functional
deduction to the design of economical multiple-output combinatio-

nal circuits.

The objective of the third task, Boolean Analysis of Rela-

tional Databases, was to investigate potential applications of

the inferential processor to database processing. We began by

ke S
“ -

e > O e e -

e At e

. et

f e —— e

Cm e em e e o - S . [-

studying the problems asgsociated with relational databases. This
study showed that the generation of keys for a database is a
difficult problem of practical importance. The keys may be deter-
mined if the functional dependencies associated with the database
are known; we therefore devised an algorithm (the first to our
knowledge) for generating the functional dependencies in a given
relational database. This algorithm also produces the full set of
minimal keys for the database., The algorithm was programmed
entirely in the logic;l language PROLOG [3,4], which was used for
two reasons: first, this lanquage is most effective for program~
ming tasks involving logic; second, PROLOG is an "inferential

processor" in software, whose operation we wished to study.

This report is organized in two parts. Part A includes
genetal’background on logical computers and some discussion of
the motivation for our research (Section II), a brief description
of the structure of the inferential processor (Section III), and
discussions of the results obtained under tasks 1 and 2 above

(Sections IV and V). Part B, originally prepared as an M.S,

thesis [5], presents the results obtained under task 3.

e e a e b e ———— ek e e e

References

1. Brown, F. M,, "Inferential Processor," Final Report,
AFOSR/SCEEE Summer Faculty Research Program, August 1980,

2. Brown, F. M,, "High-Speed Reasoning in Propositional
Logic," Proposal to AF Office of Scientific Research,
July 1981.

3. Roussel, P., "PROLOG: manuel de reference et d'utilization,*
Groupe d'Intelligence Artificielle, Universite d'Aix-~ _
Marseille, Luminy, France, September 1975.

4, Clocksin, W.F. and C.,S. Mellish, Programming in Proiog. ;
N.Y.: Springer-Verlag, 1981. .

e & e et el st

5. Taylor, D.K., "Analyzing Relational Databases Using Proposi-
tional Logic," M. S. Thesis, Department of Electrical
Engineering, University of Kentucky, December, 1981,

II. LOGICAL COMPUTERS

'é We outline in this section the motivation for our research,

; whose ultimate object is to produce a logical computer, i.e., 2
machine capable of high-speed inferential processing in proposi-
f tional (Boolean) logic. Some of the material in the present
section is taken from a proposal [1] prepared during the grant-

period; it is included in this report for completeness.

Propositional logic may be identified roughly with two-
valued Boolean algebra. This form of logic has appiications in
many areas, a few of which are logical design [2], the diagnosis
of failures in digital systems [3,4], and the design of
relational databases [5]), It is the basis, moreover, for
reasoning in higher-order logics such as the first-order
N predicate calculus; the latter is required for applications in
artificial intelligence [6,7]. The propositional calculus is
related to the higher-order logics in somewhat the same way that
arithmetic is related to the various fields of mathematical
analysis; it is a structure, useful in itself, on which more

elaborate structures are built.

The range of application of the propositional calculus was
outlined by Ledley (8] as follows: "The propositional calculus
can be applied to many phases of military science and related
problems as well as to business, industry, science, and
government in general. In these applications it serves as an aid
to complex reasoning, e.g., in the analysis and evaluation of

intelligence reports, the preparation and analysis of tactical

e o — J

S ————————— e e e, e o e

methods and principles, the formulation and interpretation of

legal statutes, the planning and evaluation of chemjcal and ;

'g biological experiments, the f>rmulation of psychological and
intelligence examinations, and the formulation and evaluation of

business methods and procedures. All of these and similar

'reasoning' activities and operations can use the propositional

: calculus in a fundamental way. More well-known are its
*;f applications to the design of industrial process-control
machines, digital computers, large-scale switching circuitry, and
other forms of information-handling systems. However, the compu-
tational methods of the propositional calculus present serious

and frequently insurmountable difficulties in the solution of ac-

A tual problems, and this factor has severely limited its practical

:' utilization, Consequently the need arises for a systematic way cf

3 formulating, analyzing .and '‘'solving propositional functions and

equations,”

Notwithstanding the "logical" nature of its internal oper-
ations, a general-purpose computer is ill-suited to logical com-
putation. For this reason, a number of dedicated logical proces-
sors have been proposed. For a detailed study of logic-machines,
from the Axs Magna of Ramon Lull in the thirteenth century to the
telay—machinés of the 1950's, see Gardner [9]. The electronic ma-
chines relevant to the present project may be put into three
classes: argument-verifiezrs, eguatiopn-soivers, and forpuia-
nipimizers.

All of the argument-verifiers [10-16] known to this investi-
gator (and none of the other kinds of logical computers) have
'u, been designed by logicians. The function of any such machine is
to decide the validity of an argument, i.e., a collection of
premises together with a conclusion. Egquation-solving machines
- [17-22], on the other hand, have been inspired principally by the
;1; need to solve technological problems., Such machines accept some
representation of a system of Boolean equations and produce a
v sclution (typically rparticular rather than general) for a

selected subset of the arguments in terms of the remaining argu-

ments,

‘ Formula~minimizing machines (23~27] have the common aim of
"‘ determining simplified sum-of-products (disjunctive normal form)
expressions for propositional functions. The procedures imple-
mented in all of these machines are based on Quine's formulation
[28-30) of the minimization problem, the essential feature of
which is the generation of the prime impiicants of the given
propositional function. Formula-minimization may at first glance
appear to have little bearing on mechanized inference. It is sig-
nificant. however, for two reasons, First, formula-minimization
is useful in the application of other reasoning processes,
improving the economy and perspicuity of the results obtained.
Second, the existing designs for formula-minimizing machines
represent solutions of a problem that is dominant in the design
of the proposed inferential processor, namely, that of generating

and storing the prime implicants of a propositional function.

B Y R

b et o -

pach of the machines cited above carries out a species of
reasoning; each extracts useful information, that is, from a col-
lection of propositional data. None of these machines has emerged
from the laboratory of its birth, however, because none is in any
sense “"general-purpose® within the domain of propositional logic.
The element absent in these machines is a gcentzrai principie of
reasoning, readily adaptable to argument-verification, equation-
solving, formula-minimization, and any other task involving logi-
cal inference. The proposed inferential processor embodies such a
principle, viz., that ;he prime conseguences characterize, in a
simple and economical way, all conclusions deducible from a

collection of propositional data,

The technique of automated inference we are investigating is
based on a formulation given by A, Blake in a little-known dis-
sertation [31] published in 1937, The concept of a prime impli-
cant, customarily attributed to a paper published by Quine [28)
fourteen years later, as well as all of the presently-known me-
thods for generating prime implicants, were presented in Blake‘s
dissertation, The application of prime implicants to formula-
minimization was pointed out by Quine and has since been
intensively studied and applied; Blake's application of prime
implicants to logical deduction, however, has apparently remained
unnoticed. Blake's principal contribution was to show that a
single rule of inference, that cf Hypothetical Syllogism (if P
implies Q and Q implies R, then P implies R), suffices to produce

2ll of the prime consequences of a collection of propositional

data, Expressed in terms of Boolean algebra, the single operation

of consensus (which Blake called the "syllogistic result") suf-
fices to produce all of the prime implicants of a Boolean func-
tion. This idea is closely related to the "resolution principle®
given by Robinson [32] in 1965 and now applied in mechanical
theorem- proving [6] and in programming languages, such as PROLOG
{33,34], designed to solve problems in the predicate calculus.
When compared with Blake's use of consensus, the resolution prin-
ciple is formulated in a more general structure (the first-order
predicate calculus) and is applied to a less general problem

(theorem-proving by refutation),

Blake demonstrated the fundamental role of the prime conse-
quences in generating and verifying conclusions. Our research has
shown an additiornal advantage of the prime consequences, namely,
that they enable the fundamental operations of propositional in-
ference (e.g., elimination of variables, solution of equations in
general and particular form, general of functional antecedents
and consequents) to be conveniently mechanized in a high~speed
processor. Thus a machine that accepts propositional data and
produces their prime consequences can be made general-purpose in

the domain of propositional logic.

References

1. Brown, F. M., "High-Speed Reasoning in Propositional Logic,"
proposal submitted to AF Office of Scientific Research,
July, 1981.

2. Shannon, C, E,, "A symbolic analysis of relay and switching
circuits,* Trans. AIEE, vol. 57, pp. 713-723, 1938.

3. Bossen, D, C., and S, J. Hong, "Cause-effect analysis for
multiple fault detection in combinational networks,” IEEE
Trans. on Computers, vol. C-20, pp. 1252~1257, Nov, 1971.

33
{
i
1

5.

6.

10.

11.

12.

13.

14,

15,

16.

17.

18.

Gatlin, A, B. and M. A, Fal'kovich, "Diagnosis of memoryless

digital automata uging a modified technique of natural logi-
cag deduction,” Automation and Remote Control (USSR), vol.

41' no, 1' patt 2' PP. 10"109' Januaty 1980.

Sagiv, Y., et al., "An equivalence between relational data-
base dependencies and a fragment of propositional logic,” to
appear in the Journal of the Association for Computing Mach-
inery.

Chang, C. L. and R, C. T. Lee, Symboiic Logic and Mechanicail
Theoren Proving. N.Y.: Academic Press, 1973.

Nilsson,N, J., Brobiem-Soiving Metheds in Artificiai
inteiiigence. N.Y.: McGraw-Hill, 1971.

Ledley, R. S., “Mathematical foundations and computational
methods for a digital logic machine,” Journal of the Oper-~
ations Research Society of America, vol., 2, no. 3, pp. 249~
274, August 1954,

Gardner, M., iogic Machines and Diagrams. N.Y.: McGraw-Hill,
1958,

Bauer, F. L., "I .vra .lo=con: .led logical computer STAN-
ISLAUS," Math, Computation, vcl. 14, pp. 64-67, Jan. 1960,

Burack, B., "An electrical logic machine," Science, vol.
109, pp. 610-611, 17 June 1949,

Burks, A, W., et al.,, "An analysis of a logical machine
using parenthesis-free notation,” Mathematical Tables and
Other Aids to Computation, vol. 8, pp. 53-57, April 1954.

Couffignal, Louis, "Sur un probleme d4'analyse mecanique ab-
straite,” C.R. Acad. Sci., Paris, vol. 206, pp. 1336-1338,
1938.

Marquand, A., "A new logical machine," Proc. Amer. Academy
of Arts and Sciences, vol, 21, p. 303, 1885,

Mays, W. and D. G. Prinz, "A relay machine for the demon-
stration of symbolic logic," Nature, vcl, 165, p. 197, Feb.
4, 1950,

Miehle, W., "Burroughs truth function evaluator,” Journal of
the Association for Computing Machinery, pp. 189-192, April,
1957,

Cherry, E. C, and P, K. T, Vaswani, "A new type of computer
for problems in propositional logic, with greatly reduced
scanning procedures,"” Information and Control, vol. 4, p.
155-163, 1961.

Marin, M, A., "Investigation of the field of problems for

10

e fali o

i

19,

20.

21,

22.

23.

24,

25,

26.

27.

28.

29.

30.

1.

the Boolean Analyzer," Dep't. of Electrical Engineering Re-
port no, 68-28, Univ. of Calif. at Los Angeles, 1968.

McCallum, D. M, and J. B. Smith, "Mechanized reasoning:
logical computers and their design," Electronic Engineering,
Vol. 23’ ppo 126-133' Aptil 19510

Rose, A., €omputer Logic. N.Y.: Wiley-Interscience, 1971.
Chapter 3, "Logical Computers,*

Svoboda, A., "Boolean Analyzer,” Proc. IFIP Congress, Edin-
burgh, 1968, pp. 824-830,.

Toon, W. M,, "Microprogrammed Boolean Analyzer," M.S.
Thesis, Dep’'t. of Electrical Engineering, Univ. of Kentucky,
December, 1978.

Florine, J., "Optimization of binary functions with a spe-
cial-purpose electronic computer,” Avtomation and Remote
COhttOl (USSR)' VOl. 28' no. 6' ppc 956-962' June' 1967.

Garton, R. D., "A hardware realization of a decomposition
algorithm," Report R-511, Coordinated Science Laboratory,
University of Illinois, May 1971.

Gerace, G. B. et al,, "TOPI--2 special-purpose ccmputer for
Boolean analysis and synthesis,” IEEE Trans., on Computers,
vol. C-20, no. 8, pp. 837-842, August 1971.

Gomez-Gonzalez, L., "Estudio teorico, concepcion y realiza-
cion de un sistema electronico para simplificar funciones
logicas,” Ph.D, Thesis, Dpto. Electricidad y Electronica,
Facultad de Ciencias, Universidad de Granada, Spain, 1977.

Matney, R. M. and C. H, Roth, "Associative computing struc~
tures for the solution of logic design problems,"” SWIEEE
Conference Record, 1969.

Quine, W. V., "The problem of simplifying truth functions,"
Am, Math. Monthly, vol, 59, no. 8, pp. 521-531, Oct. 1952,

Quine, W. V., "A way to simplify truth functions," Am. Math,
Monthly, vol. 62, no, 10, pp. 627-631, Nov. 1955,

Quine, W. V., "On cores and prime implicants of truth func-
tions," Am, Math., Monthly, vol. 66, no, 9, pp. 755-760, Nov-
ember 1959,

Blake, A., Caponical Expressions in Booiean Ailgebzra.
Chicago: University of Chicago Libraries, 1938 (Reprint of
Ph.D. Dissertation, Department of Mathematics, University of

Chicago, 1937).

R + < bouidd

S) O PP

32.

33.

34,

Robinson, J. A., "A machine-oriented logic based on the re-
solution principle,” Journal of the Association for Compu-
ting Machinery, vol. 12, no. 1, pp. 23-41, January 1965,

Roussel, P., "PROLOG: manuel de reference et d'utilisation,”
Groupe d'Intelligence Artificielle, Universite d'Aix-Mar-
seille, Luminy, France, September, 1975.

Kowalski, R., hogic for Probiem Soiving. N.Y.: North-
HBolland, 1979.

12

e e e

III. ORGANIZATION OF THE INFERENTIAL PROCESSOR

We present in this section a brief outline of the organiza-
tion of the proposed inferential processor; see {1] for a more

complete description.

The function of the inferential processor is to accept,
store, and process Boolean or propositional data., It is intended
to function as a high-speed adjunct to a general-purpose compu-

ter, as indicated in Figqure 1.

General-Purpose < ' . Inferential
Computer Processor

Fig, 1. Total system.

The applications anticipated for the inferential processor
fall into two main classes: (a) tasks involving only propositi-
onal (Boolean) logic and (b) tasks involving higher-order logic,
primarily the first-order predicate calculus. The first class
includes such applications as computer-aided design of lcgic-
circuits [2], the design and analysis of databases (see [3],
which is included as Part B of this report), and on-line diagno-
sis of faults in digital systems (4]). In the second class of
applications, unlike the first, the inferential processor does
not do all of the logical work; instead, it provides high-speed
subroutines for use by the general-purpose computer. The employ-

ment of the inferential processor in the latter class of applica-

13

T N e g =t i oy TS om0 o 2 B O

£y, o

l
|
|
1
i
3

tions is based on the fact that higher-order logics employ propo-
sitional logic as their basic "arithmetic."” Most applications of
this class come under the heading of artificial intelligence,
many branches of which depend heavily on the first-order predi-

cate calculus.

Principai € I
The major components of the inferential processor are shown

in Figure 2,

terms Minterm
Processor
TERM
minterms
input terms terms
-~ Term
Processor

J

output terms -

Fig. 2. Major components of the inferential processor.

The unit labelled TERM is a register that holds the term
(Boolean product) currently under consideration, The Minterm Pro-
cessor accepts terms from TERM, building from them a Boolean
function F(xy,...,X,) using AND, OR, NOT, EOR, etc. The function
P is represented in the Minterm Processor by its minterm canoni-
cal form. The Term Frocessor accepts the minterms of F from the
Term Processor and generates the Blake canonical form, i.e., the

dissunction of the prime implicants, of F. The Term Processor

14

e a2

o VP Y TN T ey . . .
T T T T

ER ™]

-

R S et R

——— -

carries out the fundamental operations of logical analysis (elim-

ination of variables, solution of equations, etc.) which,
arranged in programmed sequences, carry out the processing re-

quested by the general-purpose computer.

Major Phases of Operation

The operation of the inferential processor takes place in
three major phases: reduction, development, and analysis. The
reduction-phase, carried out in the Minterm Processor, reduces a
system of logical equations to a single equation having the form
F = 0, The development-phase, carried out in the Term Processor,
generates a representation of F in Blake canonical form. The an-
alysis-phase, carried out in both processors, executes the se-

quence of inferential operations requested by the general-purpose

computer,

References

l. Brown, F. M,, "Inferential Processor,” Final Report, AFOSR/
SCEEE Summer Faculty Research Program, August, 1980.

2, Svoboda, A. and D. E. White, Advanced Logical Cizcuit DResign
+ N.Y.,: Garland STPM Press, 1979,

3. Taylor, D. K., "Analyzing Relational Databases using Proposi-
tional Logic," M.S. Thesis, Department of Electrical Engineer-
ing, University of Kentucky, December, 1981,

4. Brown, F. M, and H3, H, Yeh, "Boolean Equations and Logical
Diagnosis,” submitted to IEEE Transactions on Computers.

IV. MECHANIZED INFERENCE IN BOOLEAN SYSTEMS

The task of the proposed inferential processor is to accept logical

data in the form of a Boolean system and to generate useful inferences (con-

clusions) from such a system. We have attempted in this project to develop a
systematic formulation of (2) the properties of Boolean systems and (b) the
principal operations on such systems that are of use in logical inference. We

discuss that formulation in this section.

Review of Elementary Properties

The equivalences

ag€h o= ab =0 (1)
a=b = a®@®b =0 (2)
[a=0 and b=0] €= a+b=0 (3;
[a=1 and b=1]<<==P ab=1 (&)

are valid for arbitrary elements a and b in a Boolean algebra. Equivalences
(3) and (4) have obvious extensions to more than three variables; thus

(a=0and b=0 and ¢=0_ is equivalent to [a + b + ¢ = 0, etc.

Boolean Systems

An n-variable Boolean system on a Boolean algebra B is a collection

g1(x) = hy(x)

g (%) = h(x) (5)
G (%) & ey (@)
g,(%) sh (%)

of simultaneously-asserted equatlions and inclusions in which tane g's and h'e

are n-variable Bcolean functions on B and x denotes the vector (xl, oo .xn) .

16

The number, k, of equations may be zero in a system, as may the number, m, of

inclusions; we require, of course, that there be at least one equation or one

inclusion in a Boolean system.

Solutions. An element b of B™ is a solution of the system (5) if each {
of the statements in (5) becomes an ldentity under the substitution x=b. A
Boolean system is sald to be consistent if it has at least one solution; other-

wise, it is sald to be inconsistent. 4

Implication and equivalence. Let S

o and S2 be two n-variable Boolean

systems on B. We say that Sl implies SZ’ written Slab SZ’ in case the state-

ment

(Vb €B") [b is a solution of S, = b is a solution of 52]

is true. Note that Sl implies any n-variable Boolean system if S, is inconsis-

1
tent. We say that two Boolean systems Sl and 52 are equivalent, written

Sl“ Sz, if each implies the other, i.e., if each has the same set of solu-

tions. Any two inconsistent systems, in pa.rticulé.r, are equivalent.

Reduction
By (1) and (2), the system (5) is equivalent to the system

0

81(x) ® h,(x)

1]
o

5 (D) @ ()

- (6)
B 41(X) t3k+1(£) =0

g,(x) b (x)

System (6) is equivalent, by (3), to the single equation

f(x) =0, (7)

where f is a Boolean function defined by

; k m. i
S TCIVE FE8 o

;
By similar reasoning, invoking (4) instead of (3), we deduce that the ;
¥

system (5) is equivalent to the single equation

o,
PP AP,

F(x) =1, (9) :

IR

-

where F is a Boolean function defined by i

Kk)
F=T(zg®hn,)MWE, +n,). (10)
= oi@ 1 icke 1 i
é?% Any Boolean system can therefore be '"boiled down" to a single equaticn

of the form (7) or of the form (9). We will focus principally on the form (7).

- Example 1. The system

is equivalent to the system {

abxy +ab +ay +bx +xy =0

1]
O

ab(ay + xy)

which 1s equivalent, in turn, to the single equation H

abxy + ab + ay + bx + xy + abxy = 0,

T

Example 2. The behavior of an AND-gate,

1§
=t

is described by the three equivalent statements

uv =W (11)
TW+TWw+uvid =0 (12)
oW+ T +UuvW =1 (13)

Boolean Relations

Given a Boolean algebra B and a vector x = (X ..,xn), a relation

1"’
(or constraint) on x is a statement that confines x to lie within a subset of
B?. The operation of the AND-gate of Example 2, for instance, 1s specified by

the relation
(u,v,W) € {(0,0,0),(0,1,0),(1,0,0),(2,1,1)} , (14)
where B = {0,1} and x = (U,V,W). (Strictly speaking, the relation is the sub-

set {(0,0,0),(0,1,0),(1,0,0),(2,1,1)} itself; it is convenient for our present

purposes, however, to call the statement (14) a relation.)

Two relation-statements on x = (xl.....xn) will be called equivalent
if they confine x to the same subset of B". Thus statement (14) above is equi-

valent to equation (11), as well as to equations (12) and (13).

An identity on x = (xl,....xn) 1s a relation equivalent to the state-
ment
x €& 3",
An identity, in other words, is a relation or x that doesn't really "confine"
X at all. The relations ilxz £ %X, and X ¥ x, = xl*'ilxz. for example, are

both identities on (xl.xz).

o w

A relaticn on x = (xl. ves .xn) will be called a Boolean reiation if it
is equivalent to a Boolean equation, i.e., if it is equivalent to a statement
of the form

f(x) =0,

where f: Bn-bB is a Boolean function. If B = {0,1}, then every relation on
X 1s a Boolean relation. If B is a Boolean algebra larger than {0,1}, then not

all relations are Boolean. Suppose B ={0,1,a,a}. Then the relation

(x,,%,) € {(0,0}, (a,0)} (19)
is a Boolean relation because it is equivalent to the 3oclean equation
1% =0. (16)

The set {(0,0), (a,0)} of solutions of (16), that is, is precisely the set

defining the relation (15). The relation
(x,x,) € {(0,0), (a,1)} , (17)

on the other hand, is not a Boolean relation. It is not equivalent, that is,
to a Boolean equation; any Boolean equation f(xl.xz) =0 on E={0,1,a.a} kaving
solutions (0,0) and (a,l) must also have solutions (0,a) ard (a,a)--2- : sha..

be able to show after we discuss the solution of Boclean equations.

Eliminants

Let f: B"=»B be a Boolean function expressed in terms of arguments

Xyre09% . We derive from f a set {CTf | TG {xl.xn}} of Boolean func-

tions by applying the following rules:

(i) C¢f £

C{xl}f = f(O,xz, ces ,xn‘)-x‘(l.xz. X))

(3 Gugt = (3D .

20

S Sk i Do i

e e S imem ey ~ov

-

l We derive another set, {DTf ‘ T s{xl, .o ..xn}] of Boolean functions by

apprlying the rules

f

(1) D¢f

« D{xl}f = f(O,xz,....xn) + f(lule"'lxn)

&1 (ii) DR USf

Dg(Dg 1) -

We call CTf the conjunctive eliminant, and D, f the disjunctive elimi-

nant, of f with respect to the subset T of {x ..,xn}. Note that if x is a

. '.,:'

1’
single letter, then the conjunctive and disjunctive eliminants of f with re-

;, 251,

spect to x are related to the discriminants i‘).c and fx (discussed in Chapter &)

as follows:

(18a)

¢
(s
bl
(\AS]
y
[}
(&)
1
L]
Hy
~

s Gasis Numasiar . ol

D{x.lf =f +f . (18v)

It is convenient to omit set-braces in specifying eliminants; thus we

write C f rather than C
X {x

£.
1%3 3

1'%3

Suppose the subset T comprises k elements (k € n) of {xl, ...xp} (we
assume without loss of generality that T comprises the first k elements, i.e.,
that T = {xl, . .,xk}) . Then C,f and D, f are determined as follows:

= T VK qa e esX
Crf EG{O,l}kf(P X1 n)

o
Lo
1]

If k=2 and n=4, for example, then

f(ooo’y'z) ¢ f(O.l.y,z) . f(lsOOsz) . f(lvls}'vz)

cwx f(w.x,y,z)

and

D £(w,x,y,2) £(0,Cyy,2) +£(0,1,y,2) +£(1,0,y,2) +£(1,1,y,2).

! 21

T o IR 1 Y Y T o~ oA

- At e

It is clear that the conjunctive and disjunctive eliminants of a Boolean
function f with respect to a subset T of the argument-set may be expressed by
formulas not involving any of the arguments in T. The process of calculating

such formulas may in some cases be greatly simplified by application of the

two theorems which follow.

Theorem 1. Let f: B"—» B be a Boolean function expressed in terms of

arguments XyoesesX o Then

= 2 (terms of BCF(f) not involving %, or X,).

1

L9 ‘

Proof: The literals }-cl and x,

which they appear, in such a way that f is expressed as

may be factored from the terms of BCF(f) in

. L M N

p 4
‘ f-pr(x ...x)+qu(x ...x)+2r.(x ceryX)
A R AR AR Lt &\ Kpr e e¥n)s

where Ppoees ,pL,ql, “os ,qM 1TyyeeesQy aze terms (products) not involving the

a.rgument x . Thus Cx £ = f(O x2,...,x 1£(1, xz....,x) may be expressed as

[2 Py * Z k][Zq Zr] ZZpiq z r_. Every consensus formed by

[Y
terms of BCF(f) is a.bsorbed by a v;r:nlof BC’*“(*‘) In pa.rticula.rk, every covlae.n-
sus of the form piq is a.bsorbed by one of the r-terms; thus gé:.piq Zr ’
and we conclude that Cxlf E.r' Thus Cxlf may be expressed‘a'thhe portion
of BCF(f) that remains after every term involving X

7
&
~

1 OT X, is deleted. It is
shown in Chapter 4 that the result of such deletion is in Blake canonical

form MR

Corollary 1.1. Let f: B"—» B be a Boolean furction expressed in terms

of arguments X;,...,x and let T be a subset of {x .xq}. Then

1’-0‘

BCF(Cpf) = 2 (terms of BOF(f) not irvolving argaments in T). (19)

Proof: By Theorem 1, (19) 1is valid if #T=1, i.e., if T is a singleton-set.
Suppose (19) to be valid if #T =k, and consider the case #T=k+1, i.e., let

T = {x,} UR, where #R =k and x, ¢ R. Then BCR(Cf) = BCF(C{xi}(CR £)) =

S, (terms of BCF'(CR f) not involving)'ci or xi) = P (terms of X (terms of BCF(f)
not involving arguments in R) not involving ii or xi) . Thus (19) is valid for
T={x,JUR B

Example 3. The system

]
+
>
1]
(%]

X +Yy =Wz

is equivalent to the single equation

Xy +wxy + w2 +Wy +yz +wx +xz =0,

whose left side, f, 1s expressed in Blake canonical form. The conjunctive
eliminants expressed below are constructed by inspection of 3CF(f), using

Theorem 1 and its corollary.

Cf=wz+wy +yz Cof = Cw(fo) = yz
cf = Xy + ¥z + xz Cof = cx(cwf) =z .

Theorem 2. Let f: B"—s B be a Boolean function expressed in terms of
arguments XyoeeerX o Then Dx f ie obtained from any SOP formula foxr f by re-
1
placing il and x,, wherever they appear in the formula, by 1.
Proof: By definition, Dxlf(xl.xz, v .xn) = f(o,xz, cee ,xn) + f(l,xz. cee .xn) .

An SOP formula for f may be expanded in the form
f(xl.xz. cen .xn) = xlp(xz, v .xn) + x.lq(xz. v .xn) + r(xz, cen .xn) ,
whers p, q, and r are SOP formulas not involving X411 hence, £(0,x

2,-..,xn) =

p(xz,....xn) + r(xz,...,xn) and f(l.xz....,xn) = q(xz.....xn) + r(xz....,xn).

23

We deduce, therefore, that

D, £(xgsxpseeeax) = Dxpennx)) +alxg,evnix) * m(xy,000,x).

el

Thus D_ f is produced by replacing the literals il and x; by 1 in the original

SOP formula for £ R

We refer to the foregoing procedure, which was given first apparently

by Mitchell {37 , as the "replace-by-1 trick.”

Example 4. Let #(w,x,y,2) be given by

‘j
(]

= WXyz + Wxyz *+ wyz .

=y
i

Then

Dwxf=yz+yz+yz y +z2

D f=zwmx+wx +w =1,
yz

Example 5. The following {correct) calculations illustrate potential
pitfalls in applying the repiace-by-1 trick:

(a) Du(ﬁ+vw) =1l+ve =1

(8) D(TF) = D () =

(e) Du(u*v)(ﬁ'*w) = Du(uw +uv +t VW) =WtV
Calculation (a) 1llustrates that D,f is not found simply by deleting U ard u
(which would produce vw rather than 1 in this case), but by replacing u and u
by 1. Calculations (b) and (c) illustrate the necessity that f be expressed in

sum-of-products form before the literals u and u are replaced by 1. If the re-

Placements are made in the original formulas, then the erroneous results would

be Du(u +v) =(1l+v) =0 for (b) and Du(u+v)(ﬁ+w) = (1+v)(1+%¥) =1 for
(e).

24

s

«i‘

Elimination

A Boolean relation constrains the vector x = (xl,...,xn) to lie within
a subset of B". It also constrains any k-element subvector of x (1skg€n) to
lie within a subset of Bk. The Boolean relation (14) describing an AND-gate,
for example, constrains (U,V,W) to lie within the subset {(0,0,0), (0,1,0),
(1,0,0), (1,1,1)} of the S8-element set {0,1}3. Suppose we wish to find the im-
plied relation on the subvector (U,W). To do so, we simply delete the middle
element of each triple in (14), and keep the set of pairs that remains. The

resulting relation on (U,W) is
(u,w) € {(0,0), (1,0), (1,1)}. - (20)

We say in this case that V has been eliminated from the relation (14)

to produce the relatiorn (20), and we call (20) the resultant of elimination of

Vv from (14). Relation (20), it should be emphasized, limits (U,W) to the same

subset of {0,1}2 as does the original relation (14).
If R is a Boolean relation, i.e., one equivalent to a Boolean equation
ﬂﬁmzuuﬁ)=m (21)

then the resultant of elimination of any argument from R is also a Boolean re-
lation, Thus, the resultant of elimination of Xy from the equation (21) may be

expressed by an equatlon of the form

&(xy0 0. 00x) = 0. (22)

25

e e i A AT e SR . 1. 1 e 19 o 9 M

o iy

camg k4

The constraint imposed by (10) on the subvector (xz. . .,xn) is

To determine the resultant (22) from equation (21), we may proceed by (i) ex-

pressing (21) as an equivalent explicit subset of B”, (1i) deleting the first
element of each n-tuple in the subset, and (1ii) expressing the resulting sub-

n-1

set of B as an equation of the form (22). The following result enables us,

however, to generate (22) directly from (21).

Theorem 3. The equation g(xz, e ,xn) =0 expresses the resultant of

elimination of x, from the equation f(xl,xz. ...,xn) =0 if and only if the

identity

g=¢C, f (23) ‘
1 .
is fulfilled.

Proof: The furcamental theorem of Boolean algebra, together with properties

(1) through (3), gives rise to the following chain of equivalences:

f(xl,xz, . ,xn) =0

f

ilf(O.xz,...,xn) + xlf(l.xz....,xn) =0

xlf(O,xz, e ,xn) =0

xlf(l,xz. co .xn) =0

f(O,xZ. ves ,xn) € ¥

x, € f(l.xz. - ,xr_.)

f(O.xz,...,xn) £x, 8 ?(l,xz,...,xn) . (24)

f(O.xz,....xn) £ ?.‘(l,xz,...,xn) .

25

b e e ot e -
}

which may be re-expressed as
f(O,xZ,...,xn) -f(l,xz....,xn) = 0.

Thus g=0 1is the resultant of elimination of X from £=0 if and only if the

condition (23) is satisfied

Corollary 3.1. The equation G(xz, .e .,xn) =1 expresses the resultant of

elimination of x, from the equation F‘(xl,xz, v ,xn) =1 if and only if the

1
identity

G=D F (25)
is fulfilled.

Example 6. The AND-gate discussed in EZxample 2 is characterized by either

_ of the equations £(U,V,W) =0 or F(U,V,¥) =1, where the functions f and F

are defined by
£ =00+ 7w+ Uvid (26)°

F=0F +7# + UV ,

Applying Theorem 1 and its corollary, the resultant of elimination of V is ex-

pressed by either of the equations g(U,W) =0 or 3(U,W) =1, where

g=C,f = £(U,0,W) « £(U,1,W)
= (Dw + W) o (0w + uR)
= 0w

G =D,F = F(u,0,W) + F(U,1,W)

(TR + %) + (OR + uw) ,
U+,

The resultant s expressed, therefore, either by UW = 0 or by U+W = 1; either
of these equations, or the equivalent inclusion W € U, is equivalent to the
relation (20). These relations express all that is known concerning U and W,

in the absence of knowledge concerning V.

If we eliminate W from (12), the resultant is (UV)(U +V) =0, ti.e.,
0=0. The latter relation on (U,V) is an identity; it allows (U,V) to be cho-
sen freely, that is, from {O,l}z--which confirms our expectation that the
inputs to an AND-gate should be unconstrained in value if nothing is known

concerning the value of the output.

The Extended Verification Theorem

We discuss in this section a result, due to L¥wenheim [2] and Miller
(4], which enables an implication between two Boolean equations to be trans-
lated into an equivalent Boolezn inclusion. The presentation in this section

is adapted from that of Rudeamu [6].

Let s be a single element of B and let v = (vl,vz. . ..v") be a vector

onB, i.e., s€Band v € B™, Then sv and vs are defined by

) .

8v = vS = (SV,,SV,,.s.,5V
- - (l' 2 '"“"n

Lemma 1. Let £: B" =+ B be a Boolean function and let b be an element

of B" such that £(b) = 0. Then

£(pf(x) +x¥(x)) =0 Vxes". (27)
Proof: By the fundamental theorem of Boolean ilgebra,

£2(£(x) +x#(x)) = ¥(x) £(x) + £(x) £(b) .
Each term on the right-hand side of the foregoing equation has the value zero,

for any x € B, proving (27). M

Theoren 4 (Extended Verification Theorem). Let f: B" —»B and g: B"~» B

be Boolean functions, and assume that the equation f(z) =0 is consistent. Then

the following statements are equivalent:
(1) (Vv x € B") [£(x) =0 = g(x) =0]
(11) (VxeB") [g(x) € £(x)]
(111) (Vx e{0,1}") [s(x) £ £(x)] .

Proof:

(1) =3 (1i): Let b € B" be a solution of £(x) =0, i.e., let £(b) =0
Then g(b) =0. For any x € BY, f£(xE(x) + bf(x)) = O by Lemma 1; hence,
g(x¥(x) + bf(x)) = 0. Thus, for all x €B", ¥(x)e(x) + £(x)e(d)=
£(x) ¢(x) = 0, i.e., 3(x) € £(x), proving (ii).

(i1) =p» (1i1): Trivial,

(1i1) = (1): The functions f and g are Boovl...ea.n; hence, they may ‘:.e‘..
written in minterm canonical form, i.e., f(x) = Zf mi(x) and g(x) = ‘Z”gi mi(x)
for all x € B". Assume (1i1), i.e., assume tha.t g* g £, (+=0,1,...,2%1), and
let b € B"” be a solution of f(x) =0. Then g f mi\b) = 0, which implies that
fimi(g) = 0, and therefore that gimi(g) 2 0'.(1=0,1,...,2 -1). Thus g(b) =0,

proving (1). W

Corollary 4.1. Let f: B"—» B and g: B" =% B be Boolean functions and
assume that the equation f(x) = 0 is consistent. Then the following statements

are equivalent:
(1) (Vx € B") [£(x) =0 @b &(x) =0]
(11) (Vx 63" [£(x) = &(x)]
(111) (Vx e {0,13") [£(x) = &(x)] .

Proof: Immediate from Theorem 3 and the definition of equivalent systems. M

29

Poretsky's Law of Forms

It is useful on some occasions to re-express the information supplied
by the Boolean equation f(x) =0 in the equivalent form g(x) = h(x), where g is
any given Boolean function. The associated Boolean function h is specified by

the folluwing theorem.

Theorem 5 (Poretsky's Law of Forms). Let f,g,h: B" = B be Boolean
functions and suppose the equation f(_)ﬁ) = 0 to be consistent. Then the equiva-

lence

f(x) =0 &= s(x) = n(x) (28)

holds for all x € B" if and only if

h=fT@g . (29)
Proof: Suppose (28) to hold for all x in B™. Then (28) is equivalent, by
property (2) and Corollary 3.1, to the equation f(x) = g(x)@ h(x) (¥xe€ B7).
Thus g(x) @ £(x) = &(x) @ (g(x) @ h(x)) = h(x) (¥x €B"), from which we de-
duce (29) directly. Suppose on the other hand that the function h is defined
by (29). Let b € B” be one of the solutions of the consistent equation f(x) =C.

Tren h(b) = £f(b) @ 5(k) = 0 @2(b) = g(b), i.e., b is also a soluticn of

g(x) = h(x) (and we deduce that g(x) = h{x) is consistent). Thus f(x) = 0 =

g(x) = h(x). To show that g(x) = h(x) =P £f(x) = 0, let ¢ & B" be any solution
of g(x) =h(x). Then g(c) @ h(e) = 0, whence g(c) @ (£(c) @ =(2)) = 0 vy (29),

from which we deduce that f(¢) = 0, proving (28). I

Example 7. Suppose a Eoolean function h is sought having the property

that the equation xliz + x3 = 0 is equivalent to XXy = h. The first equation

3

‘s consistent (a solution, fcr example, is x1=0, x2=0_. x3 =0); hence, h is

30

determined uniquely by (29), i.e.,

o
[

= (xl;cz + x3) ® (x2x3)

[}

)-cz(xl + x3) .

References

1. Boole, G., An Investigation of the Laws of Thought. London: Walton, 1854.

2. Liwenheim, L., "lUber die Aufl¥sung von Gleichungen im logischen Gebietekal-
kul," Math. Ann., vol. 68, pp. 169-207, 1910.

3. Mitchell, 0. H., "On a new algebra of logic,” in Studies in Logic, ed. by
C. S. Peirce. Boston: Little, Brown, and Co., 1883.

4, Mi#iller, E., Abriss der Algebra der Logik. Leipzig, 1909-1910. Published as
an appendix to vol. III of Ernst Scar#ider's Algebra der Logik (1890-1905)
by Chelsea Pub. Co., New York, 1966.

5. Poretsky, P., "Sept lois fondamentales de la théorie des 8galités logiques,"
Bulletin de la Societé Physico-Mathématique de Kasan, ser. 2, vol. 8,
pp. 33-103, 129-181, 183-216, 1898.

6. Rudeanu, 3., Boolean Furctions and Zquations. Amsterdam: Ncrth-Hcliand, 1974,

3

L
0

‘s

2
LA
bt
p

¥
24

Y.
S,

V. FUNCTIONAL DEDUCTION

An important potential application of the inferential processor is that

of generating functional consequences, i.e., conclusions of the form
X = f(xz,...,xn). (30)

from a given system of logical equations on the variables X 9Xgp e e If such
consequences exist, then we call Xy functionally deduzible from the given
equations and we say that {xz,...,xn} is a determining subset for xl. Generat-
ing functional consesquences from a given sysiem of equations is tke inverse of
solving the system; if (20) is a solution of a system, then the system is a
consequence of (30). The problem of solving logical equations was given pri-
mary attention in Bocle's orizinal work, and has since been studied irten-

sively; there has been no progress to our knowledge, however, on the protlem

of generating functional consequences.

Some very preliminary work on functional deduction was reported in 17,
we outlire in this section the progress we have made in the meantime. & test
(Theorem 6) is given to determine, for a given logical database, the function-
ally deducible variables; this test is well-suited fcr high-speed execution by
the inferential processor, inasmuch as it is based on the basic units of data
(prime implicants) stored in the processor. Given that a variable is function-
ally deducible, the set of functions £ for which {30) is a functional conse-
quence 13 specified by Corollary 6.1. A necessary and sufficient condition for
a suvset of {xz, ‘e ,xn} to be an xl-determining subset is given in Theorem 7,
and zn algorithm is given to generate the class of minimal xl-determining sub-
sets. Finally, the theory of functlonal deduction is applied to the preblem of

designing economical multiple-output cembinational circuits.

32

|
i
i‘.
t
f

The discussion in this section is based on the concepts and terminology

introduced in Section II.

Functional Deducibility

Let us suppose a collectlon of Boolean, i.e., propositional, data to be

%f‘; reduced by the inferential processor to the single equation

.‘: ¢(x1,x2, ‘e .,xn) =1 . (31)
Ls: We say that Xy is functionally deducitle from {31) in case there is a Boolean
i 1

. n- - . . - .-
function £:B" "=»B such that equation (3C) is a consequerce of (31). We call

(30) a functional consequence of (31).

Theorem 6. The following statements are equivalent:

(1) x; is functionally deducible from d(x
(11) D, g =1.

¥ 1
2 (111) c, g =0.
1

1,...,xn) =1,

B
-
.

(iv) x, or :-cl appears in every term of BCF(%).

(1)&=»(11)<&>(111): The equivalence of the following statements follows di-
rectly from the results of Section II. In particular, the equivalence
of (a) and (b) follows from the extended verification theorem (Theorem

4) and property (2).
(a) (3f) [Fxppeeix) =1 == x =f(xy..00x)]
(8 (39 [Hxprxpree) § K@ £(xy.n)]

() (30 [#0xy0n) & Hxpoon)

; ¢(l,x2,,,,) § f(xz,.,,)

3

(d) (af) [¢(1'x2v-“) sfsa(o.xz.---)]

(e) d(l,xz....) S@(O,xz,...)

4

l -

Ny (£) a(l.xz,...) + a(O.xz,...) =1

i hd(l,xz,.-.) L d ¢(O,x2....) = O
S [~
& (e) D=1
b ! 1
F c.g=0
! - X1
4
. (111)<t=>> (iv): The terms of BcF(cx @), by Theorem 1, are those of § which do
: - 1
{: not invclve il or Xy .« Thus Cx ¢ = 0 if and only if il or X, appears in
T every term of BCF({).
k. Corollary 6.1. Let f: Bn-l-—;»B be a Boolean function. Then the equa-
o
- tion xl==f(x2,...,xn) is a functional consejuence of ¢(xl,....xn):=l if and
3 only if the functions f and ¢ satisfy the condition
; g s fs@- . (32)
- Xy Xy
z Minimal Determining Subsets

Let {{u},V,¥} be a partition of fxl.....x }, where V = {vl,...,vb} and

W= {wl,...,wq}. We say that V is a u-determining sutset of {xl,...,xn}, and

that ¥ is u-eliminable, if u is deducible from the equation

D =1 . (33)

Theorem ? Let {{u},V,W} be a partition, as described above, of the set

{xl, e .xn}. Then V 1s a u-determining subset if and only if the condition
DY) « D(#s) =0 (34)

is satisfied, in which case a functional consequence is u= f(x) , where f is

b

any Boolean function in the non-empty interval
£ 7 < -
Dy(F,) € £ $Dy(F). (35)

Proof: By Theorem 6, the variable u is deducible from Dw==1 if and only if

cu(Dw¢).=o, i.e., (Dw¢)uf(Dw¢)a = C. From the identities
(o), = Du(#) (36a)
(@)= = D(g:), (36b)
we conclude that u is deducible from Dwd =1 if and only if (34) is satisfied,

in which case, by Corollary 6.1, we obtain the equation u==f(3) as a conse-

quence, where (DW¢)u < fsg (Dw¢) . Identities (36a) and (3%b) lead therefore

to (35).

u

Generating minimal determining subsets. The following procedure, based

on Theorem 7, generates a convenient representation of the class of minimal

u~determining subsets.

Step 1. Express ¢u and ¢ﬁ as sum-of-products (disjunctive normal) for-

mulas, viz.,

;‘Q

i
™3
9

-
E

Ms

g- =

u q;

J

[&%
v

Step 2. Assoclate with each pair (pi,qj) of terms an alterm s 3 defined

i
by the summation

85 = 2 (letters that appear opposed in p, and qj).

Step 3. Construct the product-of-sums formula

35

Step 4. Multiply out, to form a sum-of-products formula for a and de-

lete absorted terms.

Step 5. With each term xy...2 of a, assoclate a minimal u-determining

- subset {X,¥,...,2}.

g Example 8. Let us examine for functional deducibility the daia given in

s a problem widely quoted by early logicians (Boole [2], Chapter IX):

8 "Suppose that an analysis of the properties of a particular class of

substances leads to the followirg statements:

(1) Whenever properties A and C are missing, then property E is found,
together with one of the properties B and D, but not both.

(2) Whenever the properties A and D are found while E is missing, then

e both B and C will either boih be found or both be missing.

=} (3) Whenever property A is found in conjunction with either B or E, or

both of them, then T or D will also be found, but not both of them.

Conversely, whenever C or D (but not both) 1s fourd, then A will be

found in conjunction with either B or E or toth of them.”

The foregolng data are equivalent to the single equation

¢ =1, (37)

where ¢ is given in Blake canonical form by

BCF(@) = ACD + ABCD + ACDE + ACDE + ABGDE + ABCDE. (38)

The variables appearing in every term of BCF({) are A, C. and D; hence, by

Theorem 6, these are the variables functionally deducible from (37).

Let us conslder the functlonally deducible variable A; in particular,

le* us determine the minimal A-determining subsets of {B,C,D,E}.

35

I

A

g, =BCD + T0E + CDE + BCDE
¢K = (D + BCDOE
Thus,
a, = (D)(c)(c)(D)(p)(c)(C + D)(B + E) :
= CD(B + E)
= BCD + CDE.

The minimal A-determining subsets, therefore, are {B,C,D} and {C,D,E}. Tc de-
termine f in the functional consequence A =£(B,C,D), we apply (35) in Theorem

7, viz.,

Thus,

BGD + D +cD +BC0D < r<cD+ BT + 0D,

Two simplified functional consequences are derived from the foregoing inter-

val, viz.,

A=C) + + EC

A=0cb +CD + BD.

Similar analysis yields the following functional consequence based on the

A-determining subset V={C,D,E}:
A=cD + % + DE.

We noted earlier that the variables functionally deducible from (37), in ad-
dition to A, are C and D. The (unique) C-determining and D-determining subsets
are {A,B,D,E} and {A,C,E}, respectively; the corresponding functional conse-
quences, in simplified form, axe

C = AD + BE - ADE

D =AC + ACE .

37

Circuit Design Based on Functional Deduction

An n-input, k-output combinational circuit is typically specified by a
system of equations of the form
z, = fl(xl""’xn)
: (39)

2, = fk(xl.....xn)

= fk+l(xl""’xn)'

(o]
]

The latter equation represents any '“don't-care” conditions that may exist on

allowatle input-combinations.

It was observed as early as 1951 [37 that a system of the form

[
|

1° gl(xl....,xn)

N
[

2 = gz(xl,...,xn,zl)

3]
i

3 = SB(XI’...'XH'ZI'ZZ) (L&Q)

z, = gk(xl,...,xn.zl.....zk_l)
may meet the functional specifications of (39) at reduced logical cost. Out-~
puts, that is, may be used to assist in the generation of other outputs. The
recursive structure of (40) guerantees that the resulting circuit is free of
closed loops. There are cases, e.g., the end-around carry in a one's~comple-
ment adder, in which closed loops may be employed with good effect in combi-
national design [4,5.6]. Such loops, however, introduce the possibility of os-
cillations and other problems inherent in the design of asynchronous sequen-
tial circuits; we therefore confine our attentior to loop-free specifications

of the form (40). We call the corresponding realizations recursive circuits.

38

The logical cost of a recursive circuit depends on which outputs are

allowed to depend on which other outputs; the sequence (1,2,...,k) specified

by (40) 1s only one of k! possible sequences. No method has hitherto been

Jm———

known for determining a promising sequence prior to working out the actual

functions corresponding to that sequence. Recursive circuits have consequently

been regarded as difficult to design, even though their potential economy has
}‘: been well-recognized; the design of such circuits is stated in [7] to be

"practicable for synthesizing a net which has not more than two or three out-

a

R puts.”

iy

e Functional deduction provides a way to overcome tae foregoing diffi-
culties, enabling recursive circuits to be designed conveniently. The follow-
ing procedure is based on minimizing the numder of arguments upon which the

output-functions depend.

" Step 1. Reduce the original specification (39) to a single equation of

3 the form ¢(x1""’xn'z1""'zk) =1.

Step 2. Calculate the z, -deternining subsets (1=1,2,...,k).
Step 3. Select a sequence S, ,S, ,...,S, of subsets of {X,,...,x_,
il i, ik 1 n
zl,...,zk} having the following properties:
(a) S, 1s a z -determining subset (r=1,...,k).
(v) S11 is a subset of {xl,...,xn};
S12 is a subset of {xl,...,xn.zilj;
313 is a subset of {xl.....xn,zil.ziz}; ete.

(c) The subsets 8, 8
1 2

Step 4. Construct simplified consequences of the form z. = &,

N ,....S1k are as small as possible.

(r==l,...,k), where the arguments of g, are those appearing in

Srl

39)

i
-

Example 9. A multiple-output circuit 1s specified by the equations

a + be

N
1]

ab + ¢

a+b+ec.

3]
(1}

. Let us apply the procedure given on the previous page, with the object of re-

- ducing the logical cost of the foregoing specifications,

& - - - — - —
5‘5 Step 1: g = 30212223 + a0212223 + ab212223 + a.bczlzzz3 + abczlz223
tep 2: Calculation of zi-determining subsets:

g = aCzyz4 + 2cZyzy * ab02223

N abz223 + a.bczzz3

N
u

®
]

(a)(a)(a + zz)(a +ce z2)(b *o, + 23)(0 tz, + 23)

3 abec + az, + az,.

2 3

" Similarly,

+ +
3 2, abe cz; a.cz3

w
]

+ + .
abc az1 a22

w
/]

Step 3: Two subset-sequerces are premising:

Sequence # 1 Sequence #2 @
8, = {a,b,c} S3 = {a,b,c} !

S3 = [a.zl} or {a.zz} S, = [c,zl}

!
32 = [clzl} Sl = {8..23} ?
i

e dusnsarast o}

Step L4: Simplified functional consequences:

Sequence #1 Sequence #2
=3 + ='+—+-

zl a + be 23 a b ¢
= ¢ zZ =3 +

z2 c + zl Zqy a+tz

z3 =a + z1 z2 =c + z1

Either of the foregoing realizations is more economical than
a direct realization of the original specifications. Each
requires a single IC package, sequence #1 a quad 2-input

NAND and sequence #2 a triple 3-input NAND,

Example 10. The input-logic for a clocked D-latch 1s defined by the

equations

C+D

(41a)

U=¢C+
V=C+D, (41v)

where U and V are excitation-signals for a NAND-latch, C is a clock-input, and
D is a data-input. A circuit implementing (4la) requires a single NAND-gate;
however, (41b) requires an inverter in additior to a NAND-gate. To simplify
(41b), we resort to functional deduction. The system (41) is equivalent to tne

single equation @ =1, where
BCF(¢) = Cuv + CDUV + CDUV. (42)

We deduce from (42) that C, U, and V are functionally deducible from ¢ = 1.

The corresponding determining subsets are represented by the functions Bar By

and avs

a uv
aU =CD + CV

ay, =(CD + CU.

et
-

=

Na e 3

TE:

v e d) a iews el

The function a, implies that {c,u} is a V-determining subset. The cor-

responding functional consequence is specified by (35) as follows:

Dy(dy) & V& Dp(gp) »

CTU+CU s Vg C+1T.
A simplified functional consequence specifying V, therefore, is
v=C+T.

A circuit implementing the latter relation requires only a single NAND-gate.

Example 1l. Let us suppose that we are to design an asynchronous se-
quential circuit having inputs ay and a, and output z. The output is to have
the value 1 if and only if the present value of the binary numver aja, is
greater than the preceding value. We assume that the signals a; and 2, cannot
change simultaneously.

By st#ndard processes of asynchronous-circult design we arrive at the

specification

y = maj(ay.a,,y)

2 = maja 20,3,
where y is an internal state-variable and where the "majority" function maj is
defined by maj(x,y,z) =xy + x2 + yz. The foregoing specifications are best im-
plemented by full adders (FA's), which generate mr jority-functions at their

carry-outputs; the resulting circuit is shown in Figure 1.

The circuit of Figure 1 requires two packages, a dual full adder and a
hex inverter. Only one-sixth of the inverter-package is employed, however, and

the upper full adder provides a sum-output,

s = ale aog v,

k2

o v e T e

oo e i o e Sv

e e 00 At e A o

4;'-".'\" W- '.“ X

FA ¢

FA ¢ —1Y
@ ——o<

S

Fig. 1. Asynchronous circuit--original design.

which is not employed at all. These observations lead us to apply functional

deduction to the expanded systenm

y = maj(a;,a,,y)
z2 = ma-j(aloao’i)
s =a@a,® -

The foregoing specifications are equivalent to the single equation #=1, where

g = a,a syz + (ala.o + a.lao)(syz + 8yz) + a,a,5yz.

Thus

¢z = 2,345y + a,a,8y * a,a,sy

P = 8138 + &ja08y + &3 5y,
whence

s, = (ay + &)(s +3)(ay +5g + 8+ y)(a, +8)(ay +ag +5+)

(s +y)(a; +ay +8+y)(a +5)(a; +9),

1-90'

8, =88,y +s.

%

A result (surprising to this investigator) of the function a, is that one of

the z-determining subsets is {s}. The corresponding z-consequence is specified

by the interval

D{al.ao,y}(g‘z) s2s D{al.ao.y}(¢5) '

; l.e.,

z_i 8%z g é .
%;% Thus, 2z is given by

l.z zZ =5,

The corresponding circuit, shown in Figure 2, requires cnly one-half of a dual

full-adder package.

o —— EA of—s

> 2

Fig. 2. Asynchronous circuit--modified design.

References

1. Brown, F.M., "Inferential Processor,” Final Report, AFOSR/SCEEE Summer
Faculty Research Program, August 1980.

2. Boole, G., An Investigation of the Laws of Thought. London: Walton, 1854

3. Harvard University Computatlon Laboratory, Synthesis of Electronic Computing
and Control Circuits. Cambridge: Harvard Uriv. Press, 1951.

4. Kautz, W.H., "The necessity of closed loops in minimal combinational cir-
cuits, IEEE Trans. Comput., v. C-19, pp. 162-164, February 1970. !

5. McCaw, C.R., "Loops in directed combinational switching circuits," Stanford
Electronics Laboratories, Tsch. Rep't. no. 6208-1, April 1963.

6. Short, R.A., "A theory of relations between sequential and combinational]
realizations of switching functions,” S.E.L. Rep't. no. 098-1, Dec. 1960. e
7. Kobrinskii, N.E. and B.A, Trakhtenbrot, Introduction to the Theory of Finite
Automata. Amsterdam: North-Holland Fubl. Cc., Sect. V1.3, 1965. J

L4y

s+ 2 N .
T

:

A i
: ;
} PART B

"] | j
& INFERENTIAL ANALYSIS OF RELATIONAL DATABASES 1

3‘ -
é» k ij
At '
Donald Keith Taylor

Sy

FOREWORD

Database~processing is an important potential application of
the proposed inferential processor., We show in this study that
propositional deduction may be used to determine the functional
dependencies in a relational database, from which (as is well-
known) the keys for the database may be determined. In
particular, we have developed and programmed a two-part algé-
rithm: the first part generates the function&al dependencies of
the relation; the second part uses these dependencies, together
with rules for propositional infererice, tc generate the keys of
the relation. The algorithm is programmed in the logical language

PROLOG.

st R, o o W NPT e
EFRERE & V) ra_ 0

I.

II.

III.

Iv.

VI.

VII.

VIII.

TABLE OF CONTENTS

INTRODUCTION . . . L] . . L] . L]

INTRODUCTION TO DATABASES + o ¢ o « o o

Database Models . . ¢« ¢ « o o &
Relational Databases . « + « . .«
Database dependencies
Database schemata and keys .

PROPOSITIONAL LOGIC AND THE EQUIVALENCE
THEORBM [] L] . L] L . L] . L] . L] . . L] L] L]
Propositional Logic . ¢« ¢ ¢« ¢« ¢ o o &

Boolean Analysis . . . e v e s e o e
Blake canonical form . . e

Equivalence Between Proposxtxonal Logic And

Databases * L L] * L] L] [] L L] [] L L] L] .
Key generation . « ¢« ¢ ¢« ¢ o o o &

GENERATION OF FUNCTIONAL DEPENDENCIES .
Generation Algorithm . . « &+ ¢ o ¢ o &
INTRODUCTION TO PROLOG ., & o « « o o &
Basic Structure . . ¢« ¢ o+
Components of Prolog o o o

Prolog Semantics
Examples of Prolog Programs

. o o o
s o o o
s & ¢
e & o o
. ® e @

SYSTEM REQUIREMENTS AND SYNTAX ., . . .

System requirements . . ¢« . ¢ o o .
FD-KGY algori thm ® 9 e 8 &+ v 6 o @ o o

PROPOSALS FOR FUTURE WORK . « « « ¢ & o«
Employment of an inferential processor
Multi-valued dependency genera%ion , .

Program modifications . « + ¢« « &« « &
Normal form generation « o+ « o« o o o o

‘:ONCLUS IONS L] . L L] - L L] L] . . L] L L] .

.

L e o o

e & °

L 4 L [] L3

O AW w

12
12
14
16

19
21

27
29
46
46
47
50
52
55

55
56

61
61
62
63
€4

65

Y IR

i

.

TABLE OF CONTENTS (CONTINUED)

fii APPENDIX A. FLOWCHARTS OF THE FD-KEY ALGORITHM .
g APPEND1X B. PROLOG IMPLEMENTATION FOR THE FD-KEY
'ﬁf ALGORITHM ¢ ¢ ¢ o o o o « o &
3;? APPENDIX C. EXECUTIONS OF THE FD-KEY ALGORITHM .
L»% REFERENCES « « & « & ¢ o ¢ o v o o o o o o o « &

: VITA & v v 0 o o e o o e e e e e e e e e e e e

67

89
119

125

129

.
%5
8

194

R R $TEE S 0 e

figuze Bage
ll Relation R(X) L] [3 L] [] * L] L] L] [] * L * [] L] * [] 8
2. Relation R(x) L] [] . . L] L] L] . [] . L] L] L] . L] L] 11
3. Relation R(x) o [] e . * e L[] L] L] L] L] [] L] [] [] L] 38
4, Copies of R(X) Partitioned According to
P"S ° . L] . L[] [[] 3] [L])) [] .] . . L[]] 41
i
5. Copies of R(X) With Attribute B Removed . . . 42
6- Main Algorithm * . L] L] L] . L] L] L] ° L] [] . L] L] 69
7. Functional Dependency Generation Routine . . 70
8. Routine to Generate List of Unique Data Items 73
9. Routine to Generate List of P; Partitions . . 74
10. Routine to Generate List of Two-Block
Pattitions .l--o'o.-..oco.oco75
11. Routine to Create N Copies c¢f the Criginal
Reiation . ¢ ¢ v ¢ ¢ o ¢ ¢ o o s ¢ o o « o o 16
12, Routine to Test for Functional Dependencies and
Generate the Product of Sums Formula EJ .. . 78
13. Routine to Generate the Sum of Products Formula
From the Product of Sums Formula 80
14, Routine to Generate the Functional Dependencies
Prom the List of Lists [HIT] . . « o« ¢ o« « o 81
15. Routine for Key generation . . . « ¢« ¢« « « o« 82
16. Routine to Convert Implications to a Sum of
Products FOrmula . . ¢ ¢ o ¢ ¢ « o o o o o o+ 84
17. Routine to Parse a Sum of Products Formula Into
a List of ListsS FCIM .+ « ¢ ¢ o ¢ o ¢ o o o« o 85
18, Routine to Calculate the Blake Canonical Form
of a Sum of Products Formula F . ¢« o ¢« o « « 87
19, Routine to Generate a List of Keys 88

i Selb et o e N 0 ANt 0 L NG 4% L N

LIST OF ILLUSTRATIONS

Ao,)

o

CHAPTER I
INTRODUCTION

A major problem in the design and use of
computers is that of storing, retrieving, and updating
large quantities of non-numerical data. This problem
is usually managed by storing these data in a
database. Several types of databases exist; however,
the relational database has the simplest and most
regular structure. This structure makes the
relational database attractive for use in large, high-
speed data retrieval systems employing associative
memories and parallel processors.

.The relational model is based on the idea that a
database containing information about a particular
object (e.g., a university class~schedule) can be
viewed as a relation on a set of attributes; the
attributes for a class-schedule would be the course
number, the room number, the professor's name, and so
on. The data of the relational database are stored in
a simple tabular form, one row for each record, and
one column for each attribute.

The data in each row of the table are accessed by

using a key of the database. A key in a relatiocnal

database is a subset of its attributes which "unlocks"

;v,i..'-‘,q:. .,.“" L
4t e s

o gba
AR
H

the database: if the value of each attribute in a key
is specified, a unique row of the table can be
specified. The keys of a relational database are
sometimes very difficult to locate; however,
examination of the functional dependencies inherent in
a database will generate the desired keys.

The functional dependencies of a database have
many uses in modern database theory. However, no
clearly defined generation method for these
dependencies has been developed. Using the recently
proven fact that propositional (Boolean) logic can be
used to characterize the functional dependencies
inherent in a relational database, an algorithmic
procedure to generate these aependencies will be
derived. By applying Boolean analysis to these
dependencies, an algorithm will be developed to
determine the keys of relational database. The two
preceding algorithms wili be joined together to form
the FD~-Key algorithm. The FD-Key algorithm has the
capability to Qenerate the functional dependencies of
a relational database; using these dependencies, the
keys of the database may be located. To demonstrate
the feasibility of the FD~Key algorithm, the logic
programming language, PROLOG, will be used to generate

the functional dependencies and keys of a given

relational database.
In Chapter II, the basic concepts of relational
databases are discussed, emphasizing the terms,

components, and properties of such databases. Also,

some associated problems of utilizing relational

databases are explored.

Chapter III presents some fundamental rules and
properties of propositional logic and Boolean
analysis. Also, the equivalence of propositional
logic and relational databases is discussed. An
algorithm to generate the keys of a database from its
functional dependencies is developed. This algorithm
is later used as one of the main components of the FD-
Key algorithm.

In Chapter IV, the algorithm to generate the
functional dependencies from a relational database is
developed. As an example, the functional dependencies
and keys for a_given relation are derived.

Chapter V discusses the basic concepts of the
logic programming language PROLOG. Using these
concepts, Chapter VI presents the syntax rules and
system requirements for correct implementation of the

FD-Key algorithm developed in Chapters III and IV.

Suggestions for future work involving the FD-Key

| algorithm are presented in Chapter VII. Chapter VIII

contains a brief summary of the work and conclusions

presented in this thesis. The flowcharts of the FD-
Key algorithm presented in this thesis are contained
in Appendix A, Appendix B is made up of the actual
PROLOG software used to execute the FD-Key algorithms.

297 - %>
sy <,

Finally, Appendix C contains executions of the FD-Key

RIS U WPORT SR

algorithm in PROLOG for several sample relations.

Ry

P

e

CHAPTER II

INTRODUCTION TO DATABASES

Ratabase Models
A typical database is organized into three

different parts: a collection of interrelated data,
the hardware necessary to stcre the data, and the
software required to use the data in a real-world
application. The database must accurately represent
some undertaking in the real world, and it must be at
the user's disposal. The currently available hardware
imposes a structure upon the data. This structure is
called a schema, and it defines the data model used in
creating the database. Each model is given a name
which represents the way data are viewed by the users.
The three currently used structures are the network,
hierarchy, and relational models. The database
systems that are curently in existence were proposed
and studied in many different reports by several
authors (1.2,3,4,5,9,12,14,15,17,18,19,21,23].

The network model was first proposed by the
Committee on Data System Language, (CODASYL). This
model consists of various blocks of data organized in

a network. The access time for some blocks of data is

very fast, but the user must set up the structure of

.o v

the system, which cannot be altered once the data

have been stored.

The second data structure is the hierarchical data
model., Here, data blocks with similar characteristics
are accessed by a common data path. Hence, access
time between data blocks with similar information is
very small, but access time between blocks with very
dissimilar data can be very large.

The third data structure is the relational model
developed by E. F. Codd [10]. In a relational
database., the data are normalized into a form where
the relationships among data items appear in a two-
dimensional tabular form. Most users have very little
trouble in understanding this data model since the
two-dimensional tgble is a familiar method of
conveying information. This thesis will use the

relational data model exclusively.

Reiationai Ratabases

The previous discussion presented some general
concepts of data models, but to fully understand
relational databases, the accepted conventions,
properties, and formal definitions of a relational

database must be explained. Henceforth, the use of the

word "database" will refer to a relational database.

o

In a database, the two-dimensional table is called

a reiation. The columns of the relation are labeled
with unique names called attributes, and the rows are
called typies. The data values in the relation are
chosen from several sets of values called domains.
Each attribute has a domain and several attributes may
share the same domain. For example, if a relation has
two attributes, say part number and serial number, the
attributes are different, but their domains could be
the same set of numbers., A more formal definition of
a relation is now given, since some of the basic
terminology has been discussed.

Pefinition. Given a set of domains D;, Dy,..., and
Dps R is8 a2 relation on these n sets if it is-a
collection of n-tuples, <d1rern-rdn>' such that d;
is an element of D3},...,and dp is an element of Dp.

The usual method of representing attributes in a
relation is to allow letters near the beginning of the
alphabet to stand for individual attributes, and
letters near the end of the alphabet to stand'for
sets of attributes. For example, C could represent
the attribute COURSE in Fig. 1, and X could represent
the set of attributes {NAME, COURSE, TIME, ROOM
NUMBER}. The union of two sets of attributes, X and

Y, is denoted by the concatenation XY, and ABC

represents the set of attributes {A,B,C}. The relation
R on the set of Attributes X in Fig. 1 is written as
R(X). If X is broken into two sets, Y={COURSE, TIME}
and Z={NAME, ROOM NUMBER} where X=YZ, then R(X) is the

same as R(Y,2).

{ NAME { COURSE : TIME | ROOM NUMBER :

- - - I ----------
| Green |[Psychology | 8:00 | 112 [
| Green |Psychology | 10:00 | 112 |
|Stewart |[Chemistry | 2:00 | 106 |
|Stewart |Chemistry | 8:00 | 104 |
| Jones |[Mathematics| 12:00 | 210 |
| Smith [Psychology | 9:00 | 104 |
|Johnson [Physics | 9:00 = 210 }

Fig. 1. Relation R(X).

Database depepdencies. In a database, several

relationships exist among the attributes. One of the
main relationships is that of functional dependency
(FD). Before dependencies can be discussed, the
representation of a data value in a tuple must be
explained. Let r be a tuple in the relation R(X) on
the set of attributes X, where the set of attributes Y
is contained in X. The tuple of values of r for the

set of attributes Y is denoted by r(Y].

DEFINITION. Given a relation R, twc sets of

attributes X and ¥, the functionai dependency, X -> ¥,
holds in R, (or relation R satisfies X =-> Y), if and

only if for any two tuples v and w in R, v([X] = w[X]

implies v[Y] = w[Y].

RBERPINITION. A dependency s is a gonseguence of a
set of dependencies S if for all relations R, s holds
in R if all the dependencies of S hold in R.

Functional dependencies are used extensively in
designing relations that are free from data storage
and retrieval errors. These errors are called
inseztion, deletion, and rewziting anomalies. The
insertion anomaly is the use of undefined or null
values in the table of a relation. The removal of a
part of a tuple, causing the loss of other
information, is8 called a deletion anomaly. The
rewriting anomaly can easily be explained by thé
following example. Suppose the functional dependency
A->B holds in the relation R(X), and there exist
tuples t; = <aj,bj,c3> and ty = <aj,bj3,c2> in R(X).
Then if t; is changed to <aj,by,c1>, the tuple t, must
rewritten as <aj,bj,c2>. If ty is not changed, an
anomaly will exist in the relation since the
dependency A->B will no longer hold.

Ratabase schepata and keys. A redation schema is a

description of a single relation consisting of the

relation name, a set of attributes, and a set of

10

dependencies. The gtate (instance or extension) of a
relation schema is simply a table of data that
conforms to the set of dependencies and uses the
attributes contained in the relation schema. A
database schema, B, is the set of relation schemata in
the database. The state of a database, D, is a mapping
of relation states to the schemata of B.

The concept of a set of key attributes {or simply
a key) existing in a database is vital to the
retrieval of information stored in a database. Once a
key has been located, any other information stored in
the database can be accessed.

BEFINITION. A subset Y of X is a key for R(X) if
and only if Y->X and there is no proper subset Z of ¥
such that 2->X,.

In other words, a key of a relational database is
a subset of its attributes that "unlocks" the
information stored in the database: if the data values
for a key are specified, a unique row of the table is
identified.

A notion of a superkey is closely related to the
notion of key. A superkey is a set of attributes
containing a key as a subset . Consider the relation
R(X) shown in Fig. 2, on the set of attributes X =
{A,B,C,D}. The set 2 = {A,D} is a key of R(X); thus

11

one of the superkeys of R(X) is the set ¥ = {A,B,D}.

| A | B | C | D |
,. r e s e
- a1 by | e3 d
- | as | ba] c3 | dy |
| al | b1 | e | d2 |
I IR T S R

(RN

Fig. 2. Relation R(X).

PR, ¢ oy

An important but difficult task to be completed
before a database can be used is that of determining
the set of keys for a given relation. To solve this i
problem, the set of functional dependencies must .
either be known or found from the relation. A

procedure to generate these dependencies and the keys

for a relation is presented later in this thesis.

CHAPTER III
PROPOSITIONAL LOGIC AND TBE EQUIVALENCE THEOREM

As discussed in Chapter II, the determination of a
set of keys for a relation in a database can be a
difficult task. However, once a key has been located,
the data stored in the datzbase can be easily
accessed. It would be very desirable, therefore, to
have a method of key generation for a relation. The
aim of the following discussion is to present a method
to locate the keys of a relation in a database using
the functional dependencies of the relation. In later
chapters, this algorithm will be used as a major part
of the FD-Key generation algorithm. The method of
locating the keys will be developed by examining the
equivalence between propositional logic and database
dependencies. Before this equivalence can be
discussed, some basic ideas of propositional logic and

Boolean analysis will be presented.

2ropozitional Legic

Propositional logic deals with statements that are
assigned a truth value, Each statement is called a
propesition, and it can have only one truth value,

either true or false.

12

13

These statements are denoted by propoesitionai
yariables A.B,C,.... Using the logic operations &
(AND) and => (IMPLY), an implication AjsAjz&...&Ap =>
B1&...&Bg Can be created. This implication is said to
be true if and only if all of the Bj's are true or at
least one of the Aj's is false. Hence, this
implication can be viewed as a statement
(proposition). Normally, & is represented by simple
juxtaposition of the variables. For example, the
above implication may also be written as
A1A5...An=>Bj...Bg. It should be noted that in this
thesis the symbol (=>) is used for conditional
implication. Normally, this symbol is used for
logical implication, and the symbol (->) is used for
conditional implication. However, the symbol (->) is
reserved in this thesis for use with functional
dependencies; to avoid notational confusion,
therefore, the symbol (=>) is used for conditional
implication. The following discussion presents some
basic ideas of propositional logic (8].

A fundamental inference-rule of propositional
logic is that of hypothetical syliogism. This rule
states that the conclusion below follows from its
premises.

Major Premise: X=>Y,

14

Minor Premise: ¥=>Z.
Conclusion: X=>Z,

The proposition X=>Z is said to be a 3iggical
consequence of the set of propositions {X=>Y,y=>2},
In general, we have the following:

Refinition. The proposition F is a logicail
sonseguence of a set of propositions S, if for every
truth assignment P, the proposition F is true under P
when all the propositions of S are true under P.

In propositional logic, deduction, (the generation
of a conclusion from a set of premises), is performed
by invoking various inference rules. These rules
state that a specific conclusion can be obtained from
a specific set of premises. While these rules work
and are useful, a more simplified method of deriving

conclusions would be very useful.

Booiean Anaiysis

Propositions satisfy a set of mathematical laws
that are used to define a Boolean algebra. The
relation => (conditional implication) of propositions
can be translated into the relation X (inclusion) of
Boolean algebra. 1In particular, the statement

If X is true, then ¥ is true

can be represented by the two equivalent expressions

15

X=>Y, and
igY.

The information in these expressions can also be
presented in two types of equations. These equations
can either be in the "equals-zero” or ®"equals-one®
of form of Boolean algebra. The equals-one form is found
by complementing the left side of the arrow and
forming the logic OR of this result with the right
side. For example, the equals-one form of the
proposition X=>Y is given by X' + Y = 1, The equals-
E zero form is found by complementing the right side of
the arrow and forming the logic AND of this result
2 with the left side of the arrow. For the previous
example, the equals-zero form would be XY¥'=0. The
equals-one form states that "X is false or Y is true"
is a true statement. The equals-zero form states that
"X is true and Y is false" is a false statement.
Hence, the propositions X=>Y, Y=>2Z, and X=>Z can be
represented as Boolean equations XY¥Y'=0, Y2'=0, and
XZ'=0, respectively. It is a property of Boolean
algebra that a sum is equal to zero if and only if

each of its summands is equal to zero; hence, the

above equations can be written as one equation, i.e.,

16

XY'+Y2'+X2'=0., Each of the above summands is made up
of variables. A single variable, either complemented
or uncomplemented, will be called a iiferai, and the
summands in the above equation will be called texzms.
Each term consists of a single literal or a product of
literals in which no literal appears more than once.
A term p is included in a term q if all of the
literals of q are contained in p. An S@P (sum of
products) formula is a single term or a sum of terms.
Two important types of terms will now be defined.

Befipition. An impiicapnt of a function F is a

1

term p such that p is included in F.

Pefinition. A prime impiicant of a function F is
an implicant p of F such that, for any term q, if p is
included in q and q is included in F then p and q are
equal.

Biake canonicai form. In 1937, A, Blake [6]
showed that the sum of all prime implicants of a
Boolean function G is a canonical form for that
function. We shall call this the Bilake canonicail form
for G and denote it by BCF (G).

There are several methods of generating the Blake
canonical form of a Boolean function. This thesis
will only deal, however, with the method of iiexated
gonsensuys, which is based upon the following

—

17

definitions.
Refinition. Two terms p and q are said to have a
literal in opposition if
(1) term p contains a variable A that is
uncomplemented, and '
(ii) term g contains the complemented variable A'.
Befinitiopn. Let two terms T; and Ty of a Boolean
formula F have exactly one literal in opposition,
i.e., let T3 = X'P and T; = XQ, where P and Q are
terms such that PQ is not equal to zero. Then the
consensus of T; and Ty is formed from the product PQ
by
(1) deleting the two opposing literals and
(ii) deleting any repetitions of a literal.

The method of generating the BCF of a Boolean function
using iterated consensus is given below.
Befinition. Given a Boolean formula F, BCF(F) can
be generated by the following procedure.
(i) Express F as an SOP formula.
(i1) Persist in the following operations as
long as possible:
(a) Append to the formula the consensus

of two of its terms, unless the

congensus is included in a term

18

already present.
(b) Delete any term that is included
in another term.

Pefinition. An SOP formula G is said to be
formally incinded in an SOP formula F {f every term of
G is included in some term of F.

The following two theofems will be presented
without proofs. For a more formal presentation, see
Blake [6].

Theorem. An equation F=0 is a conclusion of the
equation G=0 if and only if the function F is included
in the function G.

Zheorem. Let F and G be SOP formulas. Then F is
included in G if and only if F is formally included in
BCF(G) .

To clarify this Theorem, let us examine the

following expressions (hypothetical syllogism):

Propositions Equations
MajorPremise: X=>Y XY'=0
Minor Premise: Y=>7 YZ'=C
Conclusion: X=>2 XZ'=0

After forming the SOP formula G = XY' + Y2',
BCF(G) can be found by iterated consensus: BCF(G) =

XY' + Y2' + XZ'. But, X2Z' is formally included in

]

——

19

BCF(G), so X2' = 0 is a conclusion of the equation G =
0. This conclusion is equivalent to the proposition
X=>Z, and hence the same result is found by two
different but equivalent methods. As mentioned
earlier, a simplified method for inferring conclusions
was desired. Using the Blake canonical form ¢to
generate a conclusion from a given set of
propositional premises, stated as equations, is such a
method. For a more detailed study of this procedure

tee [7].

Equivalence Between Propesitiopal LZogic And Ratabases

For a given set of propositions {A=>B,C=>D} and a
corresponding set of functional dependencies
{A->B,C~->D}, the syntactical similarity of the sets is
very apparent. However, this similarity does not
necessarily imply that two corresponding elements of
these sets are equivalent. Fortunately, Sagiv, et.
al, [21] has proved the following theorem. This
theorem states that a set 5 of functional dependencies
is equivalent to a corresponding set of propositions
s*, where S* is obtained by replacing the dependency
symbol(~>) with the conditional implication symbol

(')) .

20

Eguivaience ZTheorem. Let F be a fun~tional
dependency and let S be a set og dependencie:. Then
the following are equivalent:

(1) The functional dependency F is a
consequence of the set S of
functional dependencies.

(ii) The proposition F* is a logical
consequence of the set S* of
propositions,

This theorem states that the set S = {A->B,B->D}
of functional dependencies has an equivalent set s* =
{A=>B,B=>D} of propositions, which is generated by
replacing the symbol (->) with (=>), Furti.er, since
the proposition A=>D is a logical consequence of S*,
the equivalent functional dependency A->D is a
consequence of S.

This theorem is a very bold statement. It allows
any database problem concerning functional
dependencies to be solved by the techniques of
propositional logic and guarantees the sclution to
hold for the dependencies of the database. Since the
available tools of propositional logic are generally

much easier to implement than the inference rules for

dependencies, a very difficult database problem may

AT

21

easily be solved with propositional logic. Hence, the
preceding method of iterated consensus may be used to
generate the solutions for a given problem concerning
the dependencies of a database.

Eey generation. As an example of the power of
this theorem let us examine the relation R(X) in Fig.
l of Chapter 1I. The following functional
dependencies exist in this relation. Note that the
attributes are replaced by cne-letter symbols to make

the variable manipulations clearer.

NAME-~>COURSE N->C
NAME, TIME->ROOM,COURSE NT->RC
NAME , ROOM~->COURSE NR->C
COURSE, TIME->NAME , ROOM CT->NR
COURSE, ROOM->NAME CR->N
TIME,ROOM~>COURSE,NAME TR->CN

After writing the preceding six dependencies in
their equivalent propositional 1logic forms, the
following equations are generated by complementing the
right sides of the equivalent propositions and forming
the logic AND of this result with the left gsides of

the propositions.

Na>C C'N=0

NT=>RC R'NT 4 C'NT={

NR=>C C'NR=0
CT=>NR CN'T + CR'T=0
CR=>N CN'R=0
RT=>CN C'RT + N'RT=0

Since these equations are in equals zero form,
they are equivalent to the single equation G = O,
where the function G is the logical sum of their left

menbers, i.e.,

G = C'N +# R'NT + C'NT + C'NR + CN'T + CR'T + CN'R +

C'RT + N'RT.

To generate the keys associated with a relation, a
method based upon the one developed by Delobel and
Casey [13] will be used. For a given relation, the
minterm M, which is the juxtaposition of all of the
attribute symbols, is always a superkey of the
relation. If K is the juxtaposition of all the
attributes of a key of the relation and if G = 0 is
the equation representing the set of dependencies of
the relation, then the implication

[G = 0] => [K = M]
defines all of the keys of the relation.

For the above implication to be true, either G = 0

23

must be false, i.e., G = 1, or K must be equal to M,
i.e., K and M must both be false, or K and M must
both be true. Hence, the above implication can be
expressed as the equivalent equation
G + KM +K'M' =],

By applying some generally known properties of
propositional logic and Boolean algebra to the above
equation, the following equivalent forms can be

derived.

K(M + G) + K'(M' +G) =1
K(M'G') + K'(MG') = q
G'M KX (G'M")!
G'MXKIXG+HM

Let us examine the formula G. Since G represents
the original dependencies of the relation, each term
of G will contain at least one complemented attribute
symbol, Hence, G may not include a minterm
containing only uncomplemented attribute symbols. The
minterm M containing all of the attribute symbols in
uncomplemented form is therefore not included in G.
Thus M is included in G', i.e.,

MG

The foregoing inclusion is equivalent to the Boolean

24

equation
M= G'M;
therefore, the expression

G'M XKZXG+M

is equivalent to

MXKXG+M,
which is equivalent in turn to

M X K X BCF(G + M),

The reason that BCF(G + M) is used is that it includes
all of the information available in terms that contain
the fewest possible attribute symbols.

To determine the keys for a relation, only the
terms of BCF(G+M) that contain no complemented
attribute-symbols are considered. This can be
explained by re-éxamining the bounds on K. The
minterm M is the product of all of the attribute
symbols, and it forms the lower bound on K. So M nmust
be included in K, and hence K can only include
uncomplemented attribute symbols. But K must be
included in BCF(G + M); therefore the terms of
BCF(G + M) that are keys must contain only
uncomplemented attribute symbols.

From the previous example for Relation R(X) of

Fig. 1 where C = COURSE, N = NAME, R = ROOM NUMBER,

‘4”
28

KR =

25

and T = TIME, the term M is found to be M = CNRT.
Using the set {N->C, NT->RC, NR->C, CT->NR, CR->N,
TR->CN} of functional dependencies for this relation,
together with the equivalence theorem, the set {N=>C,
NT=>RC, NR=>C, CT=>NR, CR=>N, TR=>CN} of equivalent
propositions is generated. The formula
G = N'RT + C'RT + C'NT +NR'T + CN'T +CR'T +CN'R
is produced by converting each proposition into an
equation of equals-zero form, forming the sum G =0 of
all of these equations, and writing the formula G.
Adding the term M to G and calculating BCF(G + M)
yields the result
BCF(G+M) = CT + RT + NT + C'N + CN'R,
Using the expression
M < K X BCF(G + M)
for the bounds on the unknown key K, the relation
CNRT X K <X CT + RT + NT + C'N + CN'R
is generated. Now by examining the terms of BCF(G+M)
containing no complemented variables, the keys CT, RT,
and NT for the relation R(X) of Fig. 1 are found.
Also, the superkeys of a relation can be found by
concatenating any number of uncomplemented attribute
symbols in the relation to the symbols of a key.
Therefore, CNT, CRT, NRT, and CNRT are superkeys of

the relation.

26

If the set of functional dependencies for a

relation is known, the above procedure will generate

= all keys and superkeys that exist in the relation. If
an algorithm existed to generate the functional
dependencies of a relation, then the generation of
keys for a relation could be implemented on a computer
or dedicated processor designed to perform
propositional analysis. This desired dependency
generation algorithm has been developed, and it will
be presented in the following chapter. Once both of

these algorithms have been presented, they can be

combined into a single FD-Key generation algorithm.

CHAPTER 1V

GENERATION OF FUNCTIONAL DEPENDENCIES

For the key generation algorithm of Chapter III to
be applied, the functional dependencies of a relation
must be known. We present in this chapter a procedure
for generating the functional dependencies of a
relation directly from the rows (tuples) defining that
relation. When combined with the key-generation
algorithm, this procedure enables the keys of a
relational database to be derived quickly and
conveniently. We call the combined p:céedure the FP-
Eey Algorithm.

The FD-Key algorithm may be used to solve a number
of problems. Suppose a programmer were assigned the
task of setting up a large database; then the
generation of the keys could be a very tedious and
time consuming task. By using the FD-Key algorithm,
the programmer could simply insert the database into
the computer system, execute the algorithm, and
receive the keys and functional dependencies of the
database as outputs.

As another example, suppose a database could be

updated by several different users. That is, several

~

28

users could be changing data values of tuples in
the database. This process might create anomalies
in the database. Hence, a functional dependency for
the original database might no longer hold in the
updated version of the database. This type of error
may be detected in the following manner. After each
change of data. the FD-Key algorithm could be executed
on the new database. If the functional dependencies
generated from the new database were different from
the functional dependencies of the original database,
then the recent data changes had violated the
integrity of the database. Therefore, the data-updates
should be examined for an error.

This chapter will present the section of the FD-
Key algorithm that generates the functional
dependencies of a relation, To fully understand the
operation of this section of the algorithm, the
flowcharts of Appendix A and the examples contained in
this chapter should be closely examined.

The algorithm makes extensive use of partitions,
whose definition we now recall [16].

Befinttion. A partition P of a non-empty, finite
set S is a collection of non-empty subsets of S. The

partition is denoted by P = {Bj;,Bj,.e.,Bgls the

"

ke 5 o

Ei s
.
¢

29

subsets Bj,...,By are called the bipgcks of the

partition P. The blocks of a partition must satisfy
the following two conditions.
(i) The intersection of any two blocks, Bi and
By for i not equal to j, is the empty set.
(ii) The union of all the B;'s is the set S.

€eneration Algorithm

The problem to be solved can be stated as follows:
given a relation R and a specific attribute A
contained in the relation, generate the functional
dependencies of R that contain A on the right side of
the arrow., The desired dependencies will have the
form X->A, where X may be the concatenation of several
attribute symbols. By continuing this process for all
of the attributes, the set of functional dependencies
for the given relation will be generated.

The algorithm tp generate the functional
dependencies hanipulates the data in the relations of
the database in three different ways. The first data
manipulatibn involves partitioning. Specifically, the
tuples of the original relation are placed into a
number of relations containing two sub-relations, each

of which is generated by using a two-block partition

of the data values for an attribute in the original

30

relation. After formation of the sub-relations, the
second type of data manipulation is performed. Here,
the tuples in each pair of sub-relations are compared
and a Boolean sum of attribute symbols is generated.
This sum actually represents the key for the two
tuples in the sub-relations being examined. By
repetitive generation of these sums for each pair of
tuples, the keys of the pair of sub-relations can be
found. After all of these sums are generated for the
pair of sub-relations, a product of sums (POS) formula
is generated by forming a Boolean product of all of
the sums. Each pair of sub-relations will be
subjected to this procedure, and a group of POS
formulas will be generated. Each of these formulas
will either be zero, (indicating that no key exists
for the pair of sub-relations) or a product of sums.
If a formula is zerc¢, this means that no functional
dependency can be found for the chosen attribute of
the original relation. If all of the formulas are
products of sums, however, a third type of data
manipulation is needed to generate the functional
dependencies of the relation.

This final data manipulation involves some

techniques of Boclean algebra., All of the POS

formulas generated from the pairs of sub-relations are

.

-"F‘Am" 7 T RGP I Y-

P

31

multiplied together to form one large POS formula.
This last POS formula is converted to a sum of
products (SOP) formula and simplified as much as
possible. The SOP formula now contains all of the
information needed to produce the set of functional
dependencies for the original relation, BEach term of
the SOP formula contains the attribute symbols that
are on the left sides of the arrows in the functional
dependencies that have the chosen attribute from the
original relation on the right side of the arrow.

In the development of the functional dependencies
for a relation, the following three assumptions will
be made.

(1) The data-values of the relation will not be

updated during the development period.

(2) The relation will contain a finite number of

tuples.

(3) The relation has a finite number of

attributes.

The algorithm to generate the functional
dependencies of a relation will now be presented in
seven steps.

Sten . Choose an attribute to appear on the right

side of the functional dependencies.

- 32

Step 2. Generate the set, L, consisting of one
;;{ entry for every unique data value in the column under

the chosen attribute.

Stsp 3. Generate a sequence (Py*,...,P %) of

i
k| partitions of the set L in the following manner:
H
: (i) Let i=0. P;* contains all the data values of

the set L in one block. i

i (ii) If the number of elements in the largest block

7 of p;* is less than or equal to two, stop the

?_; operations. Otherwise do (iii).
(iii) Let i=i+l, and generate a new Pj ' that contains
21 plocks. The blocks in the new partition
;- ate foundby splitting each of the blocks in H
‘ the preceding partition into two disjoint
blocks whose cardinality differs at most by
[one. If a block in the preceding partition
contains an odd number of elements, the left
block of the new pair of blocks will contain]
one more element than the new right block. Go

to (ii) and repeat.

S8Ltep 4. Generate another sequence of partitions
(P1reeesPg)sr ©f two blocks each, in the following

manner:

(i) Let i =1, and j = 1. Set Py = py".

L -
[A

L et 8 A et e e

33

(ii) Pj4;y is made up of two blocks such that
the left block contains the left half of
each block of pj*. The right block of
Pj+] contains all the elements in Pj*
not present in the left block of P;,j.
If a block of pj* contains an odd number
of elements, the extra element is placed
in the left block of Pj4).

(iii) 1If Pj* is the last partition, stop the
procedure., Otherwise, let i = i+1, and

j = j+l1.

The previous two steps have been designed to
provide maximum skewing of the partitions. That is,
the number of elements in the left block of each Py is
as large as possible. This procedure will minimize
the number of data comparisons necessary in the sixth
step of the total algorithm.

Step 5. Generate n copies of the relation being
tested, where n is the number of generated Pj
partitions. Split each copy of the relation into two
sub-reiations according to the data values found in
the blocks of the P;'s, Delete the columns

corresponding to the attribute being tested from each

of these copies. Let Ry; and Rj; denote the ith pair

Lt et amaa e en

e Y

of sub-relations, where the subscripts il and i2

represent the tuples associated with the data values
contained in blocks one and two, respectively, of
partition Pj. The generation of the sub-relations is
outlined below.

(i) Let i=1l, j = the numerical position of the
chosen attribute in the 1list of attribute
symbols, P; = the ith two-block partition of
the set of data values for the chosen
attribute, and Tl = the first tuple of the
relation.,

(i1) If the jth data item of Tl is in the left block
of Pj, then place Tl in the sub-relation Rjj-
Otherwise, place Tl in the sub-relation Ry,,

(iii) If Tl is the last tuple of the original
relation, then go to (iv). Otherwise, let Tl =
the next tuple of the relation, and go to (ii).

(iv) If i=n, stop this procedure, Otherwise, let
i=i+l, let Tl = the first tuple of the relation
and go to (ii).

Step 6. Generate a Boolean formula EI for each
sub-relation Ry. The formula generated will be in a
product of sums, POS, form. That is, a sum of
literals logically multiplied by other sums of

literals. These formulas are generated by the

|
f

35

following procedure.

(1)

(ii)

(iii)

(iv)

(v)

Let i=1, obtain both the first tuple t
of the sub-relation Rj; and the first
tuple t; of Rj3. If Rj doesn't exist, go
to Step 7. ‘

If ty;=t,, abort the dependency algorithm
since no functional dependencies exist
with the chosen attribute on the right
side of the arrow., Otherwise go to
(iii).

Compare the data values under
corresponding attributes of each tuple.
If any pair of data values are distinct,
insert their attribute name into a sum S.
Continue this procedure until all pairs
of data-values in t] and t; have been
exhausted, then go to step (iv).

Insert the sum S as a product in the POS
formula EI. Go to step (v).

If t3 was the last tuple of Rjs and tj3
was the last tuple of Rj;, let i=i+l and
go to step (i). If to was the last tuple

of Ry; and t; was not the last tuple of

Ry1+ replace tj; with the next tuple of

36

Rjj; and tz with the first tuple of Rjj;

then go to step (ii). If t; was not the

last tuple of Ri2, replace t3 with the

next tuple of Rj, and go to step (ii).

It was stated previously that maximum skewing of

the partitions will minimize the number of tuple
comparisons, For example, assume the relation Ry
contains n+k tuples such that the sub-relations Rjj
and Rj, contain n and k tuples, respectively. If k is
much smaller than n, so that k=n-p, where p>0, then
the number of tuple comparisons required to generate
the formula EI is nxk=nx(n-p)=n2-np. But if k and n
are equal, then the number of comparisons required is
nxn=n2. And if k=n+l, then the number of comparisons
would be even larger, i.e., nxk=n(n+l)=n2+n, So it is
clearly evident that maximum skewing of the partitions

Pij's is necessary to minimize the number of tuple

comparisons.

Step 7. Generate the functional dependencies for
the relation. These dependencies will contain the
chosen attribute on the right side of the arrow. The
procedure is outlined below.

(1) Let the function EA be composed of the
product of all the EI functions

previously found in the sixth step of the

(ii)

(iii)

37

algorithm,

Convert the POS form of EA to a SOP form
by multiplying the products and deleting
any terms that contain all the literals
of another term in EA.

Create a dependency with each term T; of
EA and the attribute A, and place each of
these dependencies into a set DEP, These
dependencies will be of the form T;=>A,
and DEP will be equal to {T1->A,",,
Tm~>A}. The set DEP now contins all of

the dependencies from the original

‘relation that have the chosen attribute

on the :ight‘side of the arrow.

To clarify the operation of the algorithm, the

relation R(X) in Fig. 3 will be used to gehetate an

example for each step of the algorithm. This relation

can be found in ({21]. Also, some supplementary

examples are

given to clarify steps of the algorithm

that are overly simple when applied to this relation.

38

S A N
-I -y { @ aE> S apan e -
| a5 | by | e | 41 !
Il a3 | b2 | ez | da |
l @ | by | e | 4 |
I a | by | ex | dz |
1
I a3 | by | e | 43 |
: aj bo : c2 d; {

Fig. 3. Relation R(X).

The first step of the algorithm states that an
attribute to appear on the right side of the
functional dependencies must be selected. So, in the
example relation R(X), the attribute B will be chosen.
The second step of the algorithm generates the set L
of data values associate. wvith this attribute. For
our example, this set is L={by,bs,b3].

Performing the next step of the algorithm on our
relation the sequence of partitions (Py*,P;*) will be
generated. These partitions are sets that contain
othgr sets, hence

Py* = {{bjbsb3}}

Pl* = {{blbz}.{b3}}
is the correct manner c¢f representing these
partitions. This notation contains many braces, and

it needs to be simplified. Benceforth, all partitions

will be denoted by deleting the braces of the blocks

sz 2

PP P S T S)

ARAw, « gty o ot L S

N

g

39

of the partitions, e.g.,
Po* = {bjbyb3}
Pl* = {blbz,b3}-

To further clarify this step of the algorithm, let
us examine the flowchart of Fig. 9 and another set of
data values, namely, Ll = {a;,aj,a3,ag,as.,agr,a7,ag;,
a9'310'311'512}' The following partitions will be
generated by this step of the algorithm,

P = {ajajajagasagajagagajgarialz’
Py* = {ajajazagasag,ajagagaigaliaia}
{ajaza3,agasagra7agagrajoariayz}

g
[N)
(]

Py* = {ajay,a3,a425,26,273g,29,310211/312)

Now, performing the fourth step of the algorithm
on the sequence of partitions generated from the set
L, the partitions

Py = P;* = {byby,b3}
Py = {b1b3,b2}
will be generated. Again, a flowchart and another
example is given to clarify this step of the
algorithm. Examining the flowchart of Fig. 10 and
the sequence of partitions for the set L1, the
sequence
Py =Py’
Py = {ajazazajagag,agasagajpayialz}
P3 = {ajazagasayagajgall,azagagalz!}

T

40

P4 = {ajajagagayagalpal2sazasagall!
of partitions is produced.

The fifth step of the algorithm will generate
several copies of the original relation R(X). Using
the partitions P; and P, of the set L, the copies R;'
and Ry' of Fig. 4 for relation R(X) of Fig. 3 will be
generated. This figure shows how the two copies Ryt
and R' appear before the columns corresponding to
attribute B are deleted.

The first copy R;' of R(X) is partitioned in the
following manner. Block one of partition P contains
the data values b; and b;. Therefore, any tuple of
R(X) contgining these data values under the ¢olumn B
will be placed in the sub-relation Ryjy. Since block
two of P; contains only b3, the sub-relation Rjp Will
only contain tuples that have the data value by under
the column B. Similarly for the second copy Rp' ©f
R(X), Ry; will contain tuples that have the data
values by and b3 under the attribute B. Likewise, R332
will only contain tuples that have the value b, in the

column B.

" AD=A111 550 KENTUCKY UNIV LEXINGTON DEPT OF ELECTRICAL ENGINEERING F/6 9/2

INFERENTIAL PROCESSOR. (U)
JAN 82 F M BROWN: D K TAYLOR AFOSR=81-011%
UNCLASSIFIED AFOSR=TR=82=0037 NL

22

L

[z

L
¥
> 1 ¥

rrr

<

rrr
r

llis

Bz fl22
ne ==
i 2
s
fiLe

MICROCOPY RESOLUTION‘ TEST CHART

41

Il B | A | ¢ | D |
; : I | |=e===]
1 | a1l e3 |l 4
: R11 b | aj | c3 | d2
by 1| ay | e1 | 43
by | ay l c2 I a4 |
by | az i e | @y ! |
- R12 by__|__22_|_c1_|._¢2 :
i

ks | (a) Copy R;' of relation R(X). i

i | B | A | € | D |]
|mm—-]|- - [m=——=|
by | a1 [e1 | 4 ‘
R21 b3 | az | e1 | 41
by | a1 | e31 | 42 l
b3 ‘ az_ c1_ dg_l
lbg | a1 | e | dz !
R22 ba__|_.a1_|_c2 | 81|

(b) Copy Ry' of relation R(X).

Fig. 4. Copies of R(X) partitioned according to P;'s.

After the column of data associated with the

attribute B is deleted, the new relations R; and R

are as shown in Fig. 5.

| A} ¢ | D |

| | | |
! a3 | e3 | 4
Rl ayj | e | 4z
ay | e3 | 4z

a) ! c2 dy |

| a2 | e3 | a1 |

Ry2 a2)1 | %

(a) Copy R; of relation R(X).

|l a | ¢ | D |
e B
I a3 | ey | 4
R21 | az | e1 | d3
a3 | ej | a3
T e W
[a3 | ey [dp |
R22 | aj ! c2 { d1

(b) Copy Ry of rela’.ion R(X).
FPig. 5. Copies of R(X) with attribute B removed.

The sixth step of the algorithm will be
illustrated by examining the two relations of Fig. 5
and the flowchart of Fig. 12. 1In the generation of El
for relation R;, the tuples tj=<aj,c),d1> and
ty=<aj,c1,d1> are the first two tuples examined. Now
by comparison of data values, it is found that only

attribute A will be in the first sum S. At this

point, therefore, El consists of only one sum, (A).

43

After performing the tests in step (v), the tuple t,
will be changed to tz=<aj,ci,d3>, and t3 Will remain
the same. These two tuples are compared, and the new
sum S=A+D is generated. The new sum S is placed in the
formula El, and this changes El to El=(A){(A+D). Again
the tests in step (v) are performed, and this time
both t; and t; will be changed to tj=<aj,c3,d3> and
t2=<ajz,c1,d1>. After all the tuples of Rj have been
examined, the formula El is found to be

Els=(A) (A+D) (A+C+D) (A+C) (A+D) (A) (A+C) (A+C+D) ,
which is equivalent to the formula El=A, Performing
the same operations on the relation Ry will yield the
result

E2=(C+D) (C) (C) (C+D) (A+C+D) (A+C) (A+C) (A+C+D) ,
which is equivalent to E2=C, For the firal step of the

algorithm, the formula EB and its derivation is shown

below,
EB=(El) (E2)
EB=(A) (C) =AC
Therefore the set DEP contains only th- stional

dependency AC~>B., By repeated application of this

algorithm for the other attributes, the complete set
{B=->A, AC->B, B->C}

of functional dependencies for relation R(X) of Fig. 3

44

| can be produced.

i Recalling the key generation algorithm presented
&‘ in the preceding chapter, the following results can be
| found from the set of functional dependencies. Since

the relation R(X) contains the attributes A, B, C, and

D, the term M will be equal to ABCD, and from the
preceding set of dependencies the equivalent equation i
G = 0 can be derived, where G = A'B + AB'C + BC.
if} Using the technique of iterated consensus on M and G,
the following results can be obtained.

BCF(G+M) = A'B + AB'C + BC' + BD + ACD
_ ABCD X K X A'B + AB'C + BC' + BD + ACD
? j Therefore the set of keys for the relation R(X) of
;f Fig. 3 is {BD,ACD}, and the corresponding set of
' guperkeys is {ABD,BCD,ABCD}. The results generated
above may also be generated by visual observation for
this relation. A much larger relation may be very {
hard to analyze visually, but the preceding algorithm
will always generate the desired results. The
implementation of this algorithm would be very easy in

a language designed for logic programming and

character string manipulations. Fortunately, the
programming language PROLOG has these capabilities and g

it is very easy to operate from a user's view. This

language is presented in the next chapter and the i

45

—_——

¥ actual implementation of the FD~-Key generation

v;i algorithm, using PROLOG, will be presented in Chapter
!

VI. 1

CHAPTER V

INTRODUCTION TO PROLOG

Basic Structure

In the past few years, several logic programming
languages have been developed. One of the most
powerful of these is PROLOG, a programming language
based on predicate calculus; this language was
developed at the University of Marseille starting
around 1970. A later, interactive version of PROLOG
was implemented on the DECsystem-10 in 1977 [22].
This newer version, containing both an intepreter and

a compiler, allows the user to easily write clear,

readable, and concise programs. The intérpreter aids_

in the quick development and testing of programs, and
also allows access to compiled programs. The compiler
produces code that executes ten to twenty times faster
than the interpreter, but it is advisable to compile
only well-tested programs. Any compiled program can
easily be provided with an interpretative interface to
the programmer. We present a brief summary in this
chapter of the features of PROLOG; for a more detailed
description, see [20] and [1l1].

46

bty

‘ 47

3 compoments of Broiog

‘?i Generally, any object in PROLOG can be called a
L | term. A term can either be a gonstant, a yariabie, or
?] a compound term. A constant can be any integer between
,:% =131072 to 131071 or an atom. The integers can be
i written in any base from two to ten. An atom can be
‘f any sequence of characters, and any possible confusion
:3 with other terms should be eliminated by enclosing the
q sequence in quotes. For example, 'Rabbit', rabbit,
k- (1, and = are all atoms.

| A variable is distinguished by an initial capital

letter or the leading character "_". Whenever a

variable is only referenced once, it can be denoted by
the single character "_". For example, Rabbit, X,
32, _result, and _ are all variables,

A compound term is formed with a functoxr of some

arity greater than one. The arity of a functor is the
number of terms used as arguments. In the term
member(X,[H|T]) for example, the functor "member" has
an arity of two since X and [(B|T] are the two terms
used as arguments. The term [H|T] represents a list, i
where H is the first element and T is the tail or all
remaining elements in the list. An atom may be
considered as a functor of arity zero.

The names and arities of functors are totally :

i
' 48
;

T arbitrary. That is, the programmer can introduce as
;% many different arguments for a desired functor as

‘ needed. PROLOG contains several built-in functors
used to perform basic system operations,

A PROLOG program consists of a set of procedures

which contain gianses. These clauses are made up of

terms, organized into two basic forms. The

[NRENERRE) R

propositional logic form of the first type of clause,

called a conditional Horn cilause, is of the form
:ﬁ A<=B]&B2&B3 ‘ {
| where A is called the head of the clause and B is

i,

called the hody of the clause. This clause is read "A

is true if By and By and B3 are true.” A conditional

horn clause may also have the form
A(’C1+C2

where this clause is read "A is true if C; or Cjy is

Lie.

true." The second type of Horn clause, known as a
unit clanse, is a true statement such as
A
which is read "A is true.,"”
The PROLOG language requires the head of a clause
to be separated from the body by the symbol :~, which

P PR

represents the word "if" in a logic statement. Also,

any clause must end with a period. For example, the

49

three preceding clauses translated into PROLOG would
be written as

A:-By ,By,B3.

A:=C31:Ca-

A,

These clauses taken together can be viewed as
procedure A, where By, By, B3, C;, and C, are gosls or
other procedures to be called by the PROLOG program.
The goals in the body of a procedure are separated by
the symbols *"," or ";" which represent logical
conjunction and disjunction, respectively. These goals
are procedures that impose conditions upon the head of
the clause.

PROLOG also contains provisions for expressing
granmar rules. These rules provide an easy method of
parsing strings into specific components, and using
these components in any manner specified by the
program- The typical grammar rule has the form, LHS--
>RHS, and it is read as "a possible form for the left
hand side is the right hand side." Any PROLOG
procedure can be used as a condition on the right side
by simply enclosing the procedure in braces, "{}".
Grammar rules may seem very confusing when first
encountered, but they can be written as ordinary

PROLOG clauses. For example, the grammar rule

50

p(X)-->q(X) can be translated into the clause
p(X,S81,8):-q(X,s1,8). As an example, the procedure
delim==>"+",
delim-=->{].
is a rule to remove the character "+" from a list of
characters, If "+" were not the first character in

the list, the original list would be the result.

Proiog Sepantics

PROLOG semantics can be presented in two different
ways. The procedural sepantics describes the sequence
of states through which the program passes during an
execution, and the deciarative semantics allows the
program to be broken down into many independent
programs or procedures. These smaller procedures are
usually clear ancd easily executed.

The declarative semantics makes no reference to
the ordering of clauses or procedures in a goal or
program. This type of semantics is used to
recursively define the conditions necessary for the
head of a clause to be trye. That is, the head of a
clause is true if all of the terms in the body of the
clause are also true, and each term is true if it, in

turn, is the head of a clause instance which is true.

Also a term in the body of a-clause may be a compound

SRy
- -
o~ Al

R R

51

term which is the disjunction of two other terms, For
example, the clause
A:-B;C.

is true if the compound term B;C is true, and the
compound term is true if either B or C is true. -

The procedural semantics depends upon the ordering
of clauses in a program, and the goals in a clause,
for crucial program control information. The
execution of the program depends upon this
information, and the reordering of a set of goals or
clauses may completely change the function of a clause
or program. The execution of a goal is performed by
searching for the fiist clause whose head matches the
goal. This is done in a top-down fashion. That is,
the matching starts at the top of the program and
continues until a match is found. If a match is
found, the goals in the body of the clause are
executed from left to right in the same mannér. If no
match is found, the system bagktracks to the most
recent clause, discards any substitutions caused by
that clause. and the search for another match of the
original clause is continued from this clause down

through the rest of the program.

There is one other type of control information

52

available in PROLOG, called the gunt symbol. This
symbol, "!", is used as a goal in a clause and always
succeeds when it is first called. If PROLOG ever
backtracks to the cut symbol, the goal that caused the
clause containing the cut symbol to be called will
always fail. This symbol allows the programmer to
force a goal to succeed or fail after it has been

partially executed.

Exanpples of Proiog Programs
Two simple examples of PROLOG programs will be

presented. The first example will consist of a

program to solve the following logic problem.

Bob likes logic.
Mary likes logic.
Bob likes anyone who likes logic,

What does Bob like?

The PROLOG program will consist of two unit clauses
and one conditional clause involving the predicate

"likes":

likes(bob,logic).

likes(mary,logic).
likes(X,¥):-likes(Y,logic).

After the program has been interpreted by the

' 53
‘ computer, the input query
[likes (bob,X).

will yield the results:

X=logic;
X=bob;

=

X=mary

Here, the symbol ";" is used to request an alternate

answer for the query after one answer has been found.]
As another example, consider the problem of

concatenating two lists together to form a third list.

The procedure could be formulated as follows:

" concatenate({],L,L).
concatenate ({X|L],T,[XIK]):~

concatenate(L,T,K).

The predicate "concatenate” is defined by the program;
that is, PROLOG does not know what this procedure
means until it receives these statements. However,
the symbols [] and [|] are known to the language. The i
first clauée states that the empty list concatenated
with a second list is simply the second list. The

second clause states that the list [XIL] concatenated i

with the 1list T is the list [X|R] if the list L

e - — e .

54

concatenated with the list T is the list K. When the
query
concatenate([a,b,c},[d,e,f],K)

is presented to this program, the variable R will be
returned as the list [a,b,c,d,e,f]. The above
procedures are but two of many possible examples, and
it should be noted that an excellent source [11l] of
programming examples exists.

The next chapter contains a description of the
operation of the FD-Key algorithm presented in the
preceding chapters. This description contains the
syntax rules that must be obeyed for proper operation

of the program. and some possible modifications that

the user may wish to use,

CHAPTER VI

SYSTEM REQUIREMENTS AND SYNTAX

The purpose of this chapter is to present the
syntax rules and sfstem requirements for the correct
implementation of the FD-KEY algorithm as it is
currently programmed using the language PROLOG.

System zeguirements. For the FD-Rey prcgram in
Appendix C to run correctly, the user's computing
system should meet the following requirements. First,
Version 3 of Dec-10 PROLOG or its equivalent must be
used. Otherwise, several clauses in the program will
not function correctly. For example, any clause that
uses the built-in predicate 'read' to input
information from a data file will usually have a test
for the end of file marker, ‘'end_of_file'. 1If an
earlier version of PROLOG is used, this marker may be
':-end', and the program will never cease to input
information from the data file. Therefore, a loop
will be created, and the program will either fail or
yield an erroneous result.

The other requirement is that the user's systenm
must have an adequate amount of memory storage

available. This is because the FD~Key program

55

56

generates several files for data input and output
during execution. Also, the program and its compiled
version require several blocks of storage. It should
be noted that the program deletes all of the data
files created during execution. The only exception to
this is the file 'propa', which contains the
functional dependencies of the input relation.

ER-Key algorithm. The FD-Key algorithm consists
of two main routines. The first routine is the
functional dependency algorithm, presented in Chapter
IV. The second routine is the key generation algorithm
presented in Chapter III. The operation of these
algorithms is explained in the following section of
this chapter.

The FD-Key algorithm is designed to perform the
following tasks:

(1) Input a list of attribute symbols for a
given relation.
(ii) Output the functional dependencies for
the relation.
(iid) Output the keys for the relation.
(iv) Output run-times for various routines in
the algorithm.
Since the language used is PROLOG, all constants

must be in lower case letters. For example, the 1list

of attribute symbols for relation R(X) of Fig. 3,
would be [a,b,c,d]. If the attribute symbols in the
list were capital letters, PROLOG would interpret the
contents of the list as unknown variables. This
interpretation could lead to meaningless answers or to
the failure of the entire program. It should be noted
that the ordering of the attribute symbols is very
important. The symbols.must be in the same order as
the columns of the relation. For example, if the list
for R(X) of Fig. 3 were changed to [b,a,d,c], the
algorithm would not generate the correct functional
dependencies. The generated keys would be invalid for
the relation.

As the FD-Key algorithm is currently programmed,
the relation to be examined must be stored in a
particular form. Each tuple of the relation must be
stored as a list, For example, the tuple

<a1,b1,c1,d1>
would be stored as the list

[al,bl,cl,dll.
Each list must be followed by a period or the program
will not be able to input the data correctly. The

file '“base' contains the lists that correspond to the

tuples of the given relation. To run the main

58

algorithm, the system must be in PROLOG, and the
compiled version of the FD-Key program must be
restored., For example, consider the output of
Appendix C for the relation R(X) of Fig. 3. The
program is called by the predicate
mainthing((a,b,c,d]).

The argument, [(a,b,c,d], of the predicate is
simply the list of attribute symbols for the relation
R(X). When this predicate is executed, the relation
in the file 'dbase' is examined; the functional
dependencies for this relation are stored in the file
'propa', and the keys of the database, along with the
run-times for various routines in the algorithm, are
output to the user,

If the user wishes to generate the keys for a
relation whose functional dependencies are known, the
set of dependencies must be stored in the file
'propa'. Each dependency must be written as a logical
proposition followed by a period. Thus, the
functional dependency A=>B would be stored in the
file 'propa’' as

as>b,
To call the key generation section of the program, the

following predicate is used:

solve_for_keys({a,b,c,d]).

59

In this example, the argument [a,b,c,d] is the list of
attributes for the relation containing the functional
dependencies found in the file 'propa’.

To make any other predicate of the program
available to the user, a public statement must be used
to declare the predicate, and the new program must be
compiled. For example, to declare the predicate

concatenate(X,Y,Z).
of Chapter V, the statement

:~public concatenate/3.

must be inserted in the program. The format of this
statement is

:=public name/arity.
In this statement, the name of the predicate is
separated from the number of its arguments by the
slash.

The flowcharts of the FD-Key algorithm can be
found in Appendix A. These flowcharts are written at
a level which will enable the user to translate the
algorithm to another language if PROLOG is not
available. The PROLOG program of the FD-Key algorithm
is found in Appendix B. This program contains

numerous comments designed to explain each set of

clauses. Generally, the purpose of the set of clauses

e 'y e
e A e —— -

B~ o g

C ot SR AL et bt e

60

and a brief example is contained in each comment.
Appendix C is made up of some sample runs of the FD-
Key algorithm for various relations. Each run
contains the input commands to the computer, a listing
of the input relation, a listing of the keys for the
relation, and a listing of the functional dependencies

generated by the algorithm.

CHAPTER VII

PROPOSALS FOR FUTURE WORK

There are a number of ways in which the present
FD~Key routine might be improved, i.e., made more
efficient or extended in application. Three such
improvements are detailed below. .

Empioyment of an inferentiai processor. Since the
key generation routines depend upon two separate
calculations of the Blake Canonical Form, a processor
capable ¢f performing this calculation in hardware
would be very advantageous. Fortunately, an
inferential processor has been proposed {8] that can
generate the Blake Canonical Form very quickly. This
device receives a sum of terms formula from a host
computer and outputs the Blake Canonical Form of this
sum to the host, By using this type of device, a
large portion of the key generation program could be
replaced. A revised algorithm to generate the keys is

presented below.

(1) Input the set S of functional
dependencies for the
relation,

(i1) Express the set S as a Sum of

Products formula P.

(iii) Add ¢the ¢term which
corresponds to the 1list of
attributes to F.

(iv) Output F to the hardware
processor,

(v) Input BCF(F) from the
processor.

(vi) The set of keys K corresponds
to the terms of BCF(F) that
contain only uncomplemented

literals.

This key generation algorithm clearly reduces the

amount of software used, and consequently the cost of

processing and the computer time required would be

reduced, By using this technique, the algorithm may
be speeded up to be used in a real-time data
processing situation. Another method of speeding up
the key generation routine is presented in the next
section,

Moiti-vaiued dependency generation. As the FD-Key
algorithm is presently formulated, only functional
dependencies of a relation are manipulated. The
inclusion of the information contained in the multi-

valued dependencies of the relation would speed up the

e

AT TR

|
3
B

AR i R e T 4 T e g -
-, I T

AT o b asaha' Bt L LAl

63

key generation routine. However, two problems remain
to be solved before this improvement can be made.
First, an algorithm to generate the multi-valued
dependencies from the relation would have to be
developed. Secondly, an algorithm to translate these
dependencies into a sum of products form would have to
be created. After these problems are overcome, the
new SOP formula could be added to the SOP formula for
the functional dependencies, and the resulting Blake
Canonical Form of this formula may provide some
additional information not contained in the original
Blake Canonical Form for the functional dependencies.

Erogzam medifications. Another area of
improvement would be to change the PROLOG
implementation of the FD—Kéy algorithm. The new
PROLOG program would be different in two ways. First,
the routines that manipulate the Boolean formulas
would be changed. These new routines would work
directly on the sum of products or product of sums
formulas instead of a list of 1lists, This
modification would not only speed up the data
manipulations, but it would also remove the routine

used to parse a formula into a list of lists,

Although this modification would involve major

revisions in the‘prog:am routines, a large saving of
run-time should be realized.
A second way to improve the efficiency of the

program would be to keep as much data as possible in

fast memory, that is, not to store data in files for

later use in the program. By keeping the data in fast
memory, the data retrieval time will be very short and
the algorithm would execute more efficiently. This
modification would also require major revisions in
many of the procedures, but the run-times should be
quicker.

Normal form generation. A final area of future
work might be the development of an algorithm to
produce normal forms of a relation. If an algorithm
to generate both functional and multi-valued
dependencies existed, a method to generate the normal
forms of a relation based upon this algorithm could be
produced; The development of this normalization
routine should be a very straight-forward, since the
normal forms of a relation are generated by examining
the keys and dependencies that are associated with

that relation.

——

CHAPTER VIII
CONCLUSIONS

The purpose of this thesis was to present an
algorithm capable of generating the keys and

functional dependencies of a relational database. The

LW TSR 725 ol U PRELIIC P Ty

feasibility of this algorithm was demonstrated by

WL

implementing it with the computer language PROLOG.
The key generation algorithm is based on a

; theorem, due to Sagiv, concerning the equivalence of

;, logical propositions and functional dependencies,

This theorem allows the formidable problem of key

generation to be solved by techniques of Boolean

;: analysis.

An algorithm based on partitioning was then

~ey g sk

¢ developed to generate the functional dependencies of a

database. These two algorithms were combined to form

the FD-Key algorithm, which was implemented using the

logic~-programming language PROLOG.

This implementation involved many different uses

{1 e ey e T 2 it o

of propositional logic, Boolean analysis, and the
Blake canonical form for the actual generation of
functional dependencies and keys for a relational
database., The execution of the FD-Key algorithm

imposes a distinct set of computer system

65

Ak

66

requirements. These requirements were presented and
some actual executions of the FD-Key algorithm were
given as examples.

The FD-Key algorithm provides a convenient method
for generating the keys and functional dependencies of
a database. This algorithm has produced a solution to
a difficult and complex problem of relational
databases, namely the identification of the keys
necessary to access the information stored in the
database. by using the techniques of propositional

logic and Boolean analysis.

APPENDIX A

FLOWCHARTS FOR THE FD-KEY ALGORITHM

67

T e e S

h
:
1
q

‘ 69

;‘2 (START)

INPUT LIST OF
ATTRIBUTE
SYMBOLS

. START INTERNAL !
A SYSTEM CLOCK |

b | CALL PUNCTIONAL
DEPENDENCY GENERATION
H ROUTINE (mainthingl)

A

STOP INTERNAL
SYSTEM CLOCK

y
Z?pTPUT TIME FO
FD GENERATION

v

CALL KEY GENERATION
ROUTINE (solve_for_keys)

CALL ROUTINE TO
DELETE EXTRANEOUS
DATA FILES
(clearfilesl)

STOP

Pig. 6 Main algorithm (mainthing).

. 70

(START)

INPUT LIST (XI|L]=Y
F ATTRIBUTE SYMBOLS
FOR RELATION R

(®)

CALL ROUTINE TO
GENERATE ALL UNIQUE
DATA VALUES FOR
ATTRIBUTE X
(getdatalist)

CALL ROUTINE TO
GENERATE LIST OF
*

PARTITIONS (P1*,...,P,"]

(listofparts)

I

CALL ROUTINE TO
GENERATE LIST OF
TWO~BLOCK PARTITIONS
Iplrc-orpn]
(genblocksl)

|

M = NUMERICAL

POSITION OF X

IN THE LIST ¥
(numattr)

Ta,

Fig. 7. Functional dependency routine (mainthing).

CALL ROUTINE TO
CREATE N COPIES
OF RELATION R
(formpartition)

NO

DEPENDENCY
XIST ?

YES

CALL ROUTINE TO
GENERATE PRODUCT OF
SUMS FORMULA FOR THE

FUNCTIONAL DEPENDENCIES
(formfunction)

J

CALL ROUTINE TO
CONVERT PRODUCT OF
SUMS FORMULA TO A

SUM OF PRODUCTS FORMULA
(convertpos)

Y

CALL ROUTINE TO
FORM THE FUNCTIONAL
DEPENDENCIES FROM
THE SOP FORMULA
(formdeps)

7b.

72

IS X THE
LAST ATTRIBUTE
SYMBOL IN
Y ?

NO

REPLACE [XIL]
WITH L

T¢c.

73

INPUT ATTRIBUTE SYMBOL X
AND THE LIST OF ATTRIBUTE

N = THE NUMERICAL

POSITION OF X IN THE
LIST OF ATTRIBUTES (numattr)

!

INPUT Tl = FIRST TUPL
FROM THE FILE DBASE
(getdatal)

PLACE THE NTH DATA VALUE
OF Tl IN THE LIST L

INPUT Tl =
NEXT TUPLE
OF DBASE

THE LIST L1 BY
REMOVING ANY DUPLICATE
DATA VALUES FROM L

(nodups)

y

RETURN THE LIST L1 AS
THE LIST OF DATA VALUES

Fig. 8. Routine to generate list of unique

data items (getdatalist).

74

START

S

INPUT L1 = LIST
OF DATA VALUES

EECR 1

LENGTH OF THE NO
LARGEST BLOCK OF P

GREATER THAN
272
RETURN L =
YES LIST OF
Pif's
i= i+l
A

GENERATE P;* BY
SPLITTING EACH BLOCK

*
OF Py_;" INTO

TWO DISJOINT BLOCKS
—

Pig. 9. Routine to generate the list
of Pi' partitions
(l1istofparts).

75

1
- [i= i+1]

LEFT BLOCK OF P; IS

%" FORMED WITH THE LEFT HALVES

*

; OF EACH BLOCK OF Pj AND THE
- RIGHT BLOCK OF P; IS FORMED WITH
THE REMAINING ELEMENTS OF Pj*
N l
YES j = j+1

RETURN L2 =
THE LIST OF TWO-
BLOCK PARTITIONS

Fig. 10. Routine To Generate The List Of

Two-block partitions (genblocksl). :

76

INPUT L2 = LIST
OF TWO-BLOCK
PARTITIONS, AND M THE
NUMERICAL POSITION OF
THE CHOSEN ATTRIBUTE X
IN THE LIST OF
ATTRIBUTE SYMBOLS

T T LT R T

INPUT Tl = THE
FIRST TUPLE
OF DBASE

INPUT PARTITION
P; FROM THE

LIST L2

YES

)

lla.
FPig. 11. Routine To Create n Copies Of The
Original Relation R (formpartitions).

o pecs

k

T PP Y o vy ey b

B A

REMOVE MTH DATA
VALUE FROM Tl AND
PLACE THIS NEW
TUPLE T1' INTO
THE SUB-RELATION

e N

-

77

REMOVE MTH DATA
VALUE FROM Tl AND
PLACE THIS NEW
TUPLE T1' INTO
THE SUB-RELATION

le Rjz
¢ ¥
IS Tl
THE LAST TUPL NO
OF DBASE
?

Tl = NEXT
TUPLE OF
DRASE

e

i= i+1‘

PRI

S

B it L T i

s
.

X = ATTRIBUTE SYMBOL,
‘1, n =% OF
COPIES OF THE RELATION

¢

INPUT FIRST TUPL
Tl FROM R

1

INPUT FIRST TUPL
T2 FROM 332

NO

Y

NO
FUNCTIONAL
DEPENDENCIES

EXIST

LET S = THE SUM OF
ATTRIBUTE SYMBOLS THAT HAVE
DISTINCT DATA VALUES IN
THE TUPLES Tl AND T2

3

INSERT S AS A PRODUCT IN
THE PRODUCT OF SUMS EJ

¢

12a.

{ STOP)

Fig. 12. Routine to test for functional dependencies and

generate the POS formula EJ (formfunction).

70

INPUT NEXT
TUPLE T2
FROM RjZ

NO

;
INPUT NEXT
TUPLE Tl
FROM Ry;

&

FORM POS FORMULA EX =
PRODUCT OF ALL EJ'S

DELETE ANY SUM IN EX THAT
CONTAINS ALL THE LITERALS
} OF ANOTHER SUM IN EX

STOP

12b.

deeaibih

80

| (srarr)

X INPUT EX =
2 POS FORMULA

LA

)

MULTIPLY ALL PRODUCTS TO
FORM A SUM OF PRODUCTS

FORMULA FOR EX

D

CHANGE EX TO A LIST
OF LISTS FORM

DELETE ANY LIST THAT
CONTAINS ALL THE LITERALS
OF ANOTHER LIST

<

STOP

Fig. 13. Routine to generate a sum of products

formula from a product of sums formula

(convertpos).

81

{ START)

ENPUT THE FORMULA EX AS /

A LIST OF LISTS FORM [H|T]

gn | A
2 X = THE ATTRIBUTE SYMBOL|

CONVERT THE LIST H
TO A PRODUCT H'

CUTPUT THE FUNCTIONAL
DEPENDENCY B'~>X TO
THE FILE PROPA

NO

YES REPLACE THEFJ
LIST (H|T]
WITH LIST T

STOP

Fig. 14. Routine to generate the functional

dependencies from a list of lists

(Eormdeps) .

82

{ START)

| START INTERNAL SYSTEM CLOCK |

R T
- M

A

\

CALL ROUTINE TO CCNVERT
IMPLICATIONS TO SUM OF
PRODUCTS FORMULA (doitl)

[0%, § o)

g CALL ROUTINE TO PARSE SOP
ot FORMULA INTO A LIST L
; OF LISTS (parseit)

CALL ROUTINE TO CALCULATE
BCF(L) (bcfs)

| STOP SYSTEM CLOCK|

JoUTPUT TIME FOR BCF(L)/

START SYSTEM CLOCK |

15a.

Fig. 15. Key generation.routine (solve_£for_keys).

ZINPUT LIST OF J]
ATTRIBUTE SYMBOLS

CALL ROUTINE TO GENERATE
THE KEYS (find_the_keys)

[STOP SYSTEM CLOCK|

OUTPUT TIME FOR
KEY GENERATION

CONVERT THE LIST OF
LISTS TO A LIST OF KEYS

OQUTPUT THE KEYS
FOR THE RELATION

STOP

15b,

84

B m

E NPUT FIRST IMPLICATIO
P X=>Y FROM PROPA

[¥' = COMPLEMENT OF Y |

L2 =%s Y

OUTPUT Z AS A PRODUCT,
IN A SOP FORMULA
IN THE FILE DAT

IS X=>Y

GET NEXT
IMPLICATION
X=>Y
FROM PROPA

Fig. 16. Routine to convert implications to

sum of products formula (doitl).

85

» (srarr)

[L1 = THE EMPTY LIST|

A

- INPUT THE SOP FORMULA F
1 AS A LIST L, OF ASCII CODES
1 e

ASCII CODE FOR '+' NQ ———

, FORM A NEW LIST H BY

a REMOVING THE ASCII CODES
9 A TO THE LEFT OF '+' FROM L,
~ DELETE THE LEADING CODE FOR
3 '+' FROM L TO FORM A NEW L

b

REMOVE THE ASCII CODES FOR BLANKS,
&'S, AND PARENTHESES FROM H

CONVERT THE REMAINING ASCII CODES
OF H TO A LIST OF LITERALS T

APPEND T TO THE LIST L1

17a.

Fig. 17. Routine to parse a sum of products formula

into a list of lists form (parseit).

86

REMOVE THE ASCII CODES FCR
BLANKS, &'S, AND PARENTHESES
FROM THE LIST L

CONVERT THE REMAINING
ASCII CODES OF L TO
A LIST OF LITERALS T

!

APPEND T TO
THE LIST Ll

|

RETURN THE LIST Ll
OF LIST WHICH IS
EQUIVALENT TO A SOP
FORMULA F

17b,

87

} INPUT THE LIST
53 OF LISTS ([XIL]

J

iy P = FIRST LIST IN [X|L]
a N = SECOND LIST IN [XIL]
: M = A LIST THAT CONTAINS LIST F

- GENERATE THE LIST C OF
, CONSESUS LISTS FOR M AND N

& DELETE ANY LIST OF C OR

. (XIL] THAT CONTAINS ALL THE
3 LITERALS OF ANY OTHER
- LIST IN C OR [XIL]

i

; APPEND REMAINING LISTS OF C
L AND [X[|L] TO FORM THE NEW
i LIST OF LISTS (XIL]

HAS ANY
LIST OF [X|L] NOT
BEEN TESTED FOR
CONSENSUS
?

N = NEXT

UNTESTED LIST
IN [XIL],

M = ALL LISTS

RETURN (X|L] AS THE BCF OF [(X|L] TO
OF THE ORIGINAL LIST LEFT OF N

Fig. 18. BCP routine for a sum of products

formula F (bcfs).

I g

A e S AT T > 4 P

88

-
N w
H

- INPUT [X|L] = BCF OF THE
i~ FUNCTIONAL DEPENDENCIES, AND

g - [X1|L1] = THE LIST OF ATTRIBUTE
i SYMBOLS FOR THE RELATION

APPEND (X1|Ll] TO THE LIST
[XIL] TO FORM NEW (FIR]

CALL ROUTINE TO GENERATE T i
. THE BCF OF [F|R] ;
. ° {

Y

GENERATE THE LIST C OF
LISTS THAT CONTAIN ALL
LISTS OF T WHICH HAVE NO
COMPLEMENTED LITERALS

Y | !

RETURN C AS THE
LIST OF KEY LISTS ’

Fig. 19. Routine to generate a list of

key lists (find_the_keys).

>
2
g
.
: APPENDIX B
‘ PROLOG PROGRAM FOR THE FD-KEY ALGORITHM

89

91

t=public find_the_kewys/3rkeus/1.
$=-public solve_for_keus/1rmainthing/1.

ZRBERBAAKR KKK AR A K AR AR AR KRR A K KKK KKK KKK KKK KK KKK/

Vg X/
/% These are the orerators! "+* is logic OR»"&" X/
/7% is lodic AND» x/
/% *** is lodic NOTrand "=3»" is X/
/% logic implication. X/
/X x/

7 KRR KR A KKK AR KK KKK KK KKK KR KKK KK KKK KK KKK KK KK KK/

+ =0 (P00 xkfiysi=),
t=0pP(890sufitst),
t=0r (6009 fr).,
t=or(S00yxfr).,

Z KRR AK KKK A AOK KKK KA KKK KKK KK KKK KKK KKK KKK RKKKKKKKK/
/X x/
/7% mainthing(ArA) is a routine to time the x/
/%X functional derendency seneration algorithm andx/
/% the kew deneration aldorithm. mainthing also X/
/% calls the routines to generate the functional %/

/% derendencies and the kews for a relation. x/
/% A is the list of attribute swmbols. x/
/% x/

Z KR A RAA KR ACK MR AR B AR KA AR K A AR K K KK K K KK K KK KK/

mainthing(CXIL1){-timeO(T),
mainthindl (CXILI»CXIL1)ytimeO(T1)y
close(pror3d)sTime is T1-T»
write(’Time for functional derpendency ")
write(’deneration is ‘),
nlrwrite(Time)rwrite(’'ms’)snly
solve_for_keus([X!L1)rclearfilesl.

7 RAAARACACI AR AR AR AR A AR AR AR KRR KA A KKK KR KK KKK KKK KKK/

/X . X/
/% clearfilesl is a routine to delete the data x/
/% files daty listy and blake. x/
Vg x/

ZRERERAARKAKACK AR KK A K K AR A K A KKK KA K KKK KKKk KK KK/

clearfileslii~-see(dat)rrename(datrLI)rsee(list)y
renamne(listsC1),
see(blake)srename(blakeylL]).

A T ST T P
: ’

-

e T e

92

77 300K 3020 50 20 00 20 2 30300 200 30 0 5K 30 200 28 3K K 2 200 20 5K 3 2 3K 200 2K 30 2 0K 3 2 3K K KK Kk K sk kK /
/X X/
/% mainthingl(ArA) is a routine to denerate all X/
/7% of the functional derendencies of the relationx/
/% stored in the file dbase. A is the list of x/
/% attribute sumbols. x/
/X X/
7 A A0 ¢ e 3 ook e sk K KRR KKK KKK KK KKK KK KKK KKK KKK/

mainthingl(Cl,CPIQI) -1,

mainthingl1 (CX!LIsCPIQT)i~detdatalist(Xy[PIQRJI,LZ!K1)y
listofrarts(LZ!KJ»0sN)>»
denblocksl(Ns1s1sCHITI) ynumattr(XsCLPIQIsF1)y
formeartition(CHITIsF1)ryremovec(XsLPIQIsCH1IT11)y
length(fHI Tl M)y (formfunction(CHLITLIIyMs1sX)
convertros(X)sformders(X)itruelrclearfiles(MsX) >
mainthingli(L»CPIQL).

7 AR A A A KR K A K KKK KK KKK AR K K K KK K K Kok Kk ok ok kok /

/% getdatalist(XsLryL1sM) is 3 routine that X/
/% returns the list L1 of unique data values x/
/% found in the column X of the database X/
/% gstored in the file dbase. The list L of x/
/% attributes for the database must be dgiven x/
/% alond with the lendgth M of this list. L x/

/%X includes the attribute X. This list must be X/
/% in the same order a3s the columns of the dbase X/
/30K KK o KA KK KK K 3K K K o K K KK K o K K K KKK KOK K K KR KKK KKK/

getdatalist(X»LYILI»LZIKI) t=mumattr(X,»CYILIsN)
see(dbase)

getdatal(NyLH!T)) rnodurs(CHITI»LZIK]) yseen.

7 0K 0000 080 3 K 2 5 3 3 330 K 3k 3 0 KK 2 K K K K K K KK KK K KKK KKKk Kk KK/
/% numattr(XsLrZ) is a3 routine that returns N thex/
/% numerical rosition of the attribute X in the X/
/% list of attributes L. x/

/7XRRERRAEXRKRKR KKK ARKRKRKRAK KRR R KRR KK KKK KRKKK/

PuRattr(XsLY!LIsN)$=XaYsN=1,
aumattr(XeLY!LIyN) ¢=numattr(XsLoN1)sN is N1+1.

Vgt 2322253332333 82220 ¢332 003330333333 333833349%% 94
/% setdatal(NsH) reads a3 turle(row) from dbase x/
/% and returns H all the data values found in x/
/% column N of the database. x/
/X x/
Vg 2 232 423833+ 33 3333232823333 03333 ¢3 833 s sedss ¥

it M. (- I P aias
. . . . ‘e

93

setdatal (N'P)i-read(X)rdetdata2(NsXsP).

Vg 2333223383323 233333333533 333338838333 33333333¢% 94
/% gdetdata2(NyBsC) determines if there are no x/
/¥ more rows in the databasse and returns C» an x/
/X empty list if this is true. Otherwiser the x/
/% nth data value of the turple B is rplaced into X/
/% the list of values C and another row is X/
/%X obtained by detdatal. X/
7 30K 0K 00K KK K KK K K K K KKK K A K e A KK KK KO KK KK KOk KoK/

detdatal(Nrend_of_filesLJ)i~-t,
detdata2(Ns»X»LY!TI)¢=nthinlist(NesXsYsrl)
detdatal{(NT).

7B AR AR AR KA A KK KKK K KRR KKK KK KKK KKK KKK KKK KKKk /

/% nodups(LsL1)y» removes anvy durlicate data X/
/% values from the list L and returns this X/
/%X revised list L1. X/
/X x/

/KRR KKK KK KKK KKK A KK AN A KA KKK KA KK KKK KKK KKK XK/

nodurs(L1,L1). : '
noduprs(CHI!ITIYLZiK]) i—-member(H»T)ynodurs(T»LZ!K)).,
nodurs(CHITIy[HIK]) t-rodurs(TsK).

VA 2223232233333 2222803333 ¢80 3328823333333 3382¢9 %% 94
/7% nthinlist(NsLsYsM) returns the nth data valuye X/
/% Y in the turle L., M is a counter. X/
VR 3232332+ 3 2338333332333 33333 ¢333 8388333 ¢2233¢3¢0¢3% 94

Nthinlist(NsCXILIs XsM) I -M=N,
Athinlist (NsCXILI»YsM)I-M1 is M+l
nthinlist(NsLrYsML).,

/72080 3030 00K 20 300 300 2022k 200 300 20 2 3 00 3 2 2 00 30 200 350 K KN KKK KR KKK KKK KKK K/
Vg x/
/% listofrarts(JsN) inruts a3 listof uniaue data X/
/% valuesr and outruts N the number of sartitionsx/
/% of this data list stored in the files Prls...PNX/
/% where N is a number to be determined. x/
/% x/
Va2 2332223333323 23 32333203323 ¢ 330333388332 23828¢8¢¢ 94

listofrarts(JrsNIM)-length(JdrY)sY1l is Y+1s
N1 is Yi/2»
formblockl1(OsNLyJsXsK1)rtestrn(NsyEXsK11rM).

7/ A0 K KA KK A KKK A KK A K 2 K KKK K KKK KKK KKK KK KK KKK/
X/

listofrartsi(MsLXiL]I»C) inruts 3 number Ny 3 X/
Ppartition CXIL] in a3 list of lists formy and X/
outputs 3 list of lists C which is 3 new x/
partition of CXIL]., Everw list X in CXIL1J] x/
will have been serarated into two lists and X/
inserted as two lists in the list of lists C. %/

X/

Ve 2323328333338 2233223832333 3 383383058 ¢38¢8688323 3% 94

listofrartsl(NyLIsL1)i-1,
listofrartsl(NyLH!TIy[X1)K2!1Ud)!-1length(HsY)y
Y1 is Y+1»
N1 is Y1/2sformblockl{(OsN1sHyX1sK2)sN2 is N +1,
listofrartsli(N2,TrU).

7 KA AR A A K K K K KK K 34000 K K K KR K K KK KKK KK KKk K/
/X x/
/7% formblockl(ZsNsLsL1sK) inmputs the value of a8 %/
/% cournter Z2» 3 list of data values L+ and X/
/7% outruts two new lists L1 and K which consist x/
/¥ of 3 partition of the list L. The number of %/
/7% of elements required to be in the list L1 is x/
/% input as the number N. x/
/% x/
7 R A KA K 330 A KK KK KK KK R 3K K oK oK K KK K K KK K KK KKK KKK/

formblock1(Z»ZsK1+LIsK1) =1,

formblocki(ZyN1sLJIKISCJILIYK1) =21 is Z+1»
formblock1(Z1sN1yKsLsK1),

7 R AAOK K A A AR K K A A NS K K K K K K KKK KK KKK KK KKK KR KK/
/X X/
/%X tesatn is 3 routine to call writerart. X/
/% X/
7 AR A A A A A K A K A A KKK KK K KKK KK KKK KKK KKK KKK KK/

testn(OsHIM) ¢ ~writerart(OrsHIM).,
testn(N>LCHITI M) t-writerart(N»CH!TI/M).

7 MR AR A AR KA A A K o e A K K K KK KK KKK KK KKK KKK KK/
/7% x/
/% writerart(NsL) is a routine that writes the X/
/% martition L in the file s (N+1), N is an X/
/% input number and L is 3 list of lists, This X/
/% routine also calls testh(AsB). x/
/% x/
Z7 AR A AR AR KK A A0 3 K0 KKK 00200 200 2 2 3 K KK K KKK K K K K/

' 95

l writerart(NsHsZ)!-N1 is N+lrname(N1sM)»
concat(L1121,MsF)>

name(P1syP)rtell(Pl)rwritel{H)rwrite(’ .’),
toldstesth(HsN1»2Z)>,

VR 3332383233233 3388233323333 323233823 33803336534 4% 94
B /%X X/
» /7% testh(CH!TIsN) inruts 3 number N and a3 x/
sl /% partition CHIT]y which is in 3 list of lists x/
/7% foarm. N is the number associated with the filex/
/% N where [HIT] is stored. The lendgth of the X/
b /% list H is tested. If the lendth is less than %/
/%X or eaual to twor then the routine testt(T.N) X/ 1
. /% is c3lled. Otherwisey the N+1th rartition is %/
I /% formed bw calling listofrartsl. x/
: /X X/

/3030 203 00 200 5K 00 200 2 3503 350 2 K 3 K 3K 3 3K K 3K K K K K K KK KK KK KKK KKK KK KKK Kk K/

TR

{w.i*l

testh(CH!TlyNsM)i-lendth(HsY)>»
= (Y=22rtestt(TyNsM)3j
i listoferartsl(Ns[H!T1sG)rtestn(NsGsM)).

! 7 KR K A A A KA A 3K e e 3 K S 3K K 0 K K K S K K K K K K K K K KK K kK /
,' /% x/
A /7% testt(TsN) inputs 3 list of lists T and a3 x/
3 /7% number N If T is an empty list the routine X%/
. /% succeedss otherwise testh(TsN) is called. x/

/% x/

2 200K K K 30 20 000 K S0 K 3 K 0K K K KK KK K K 30K K K KK KK KK KKK KK K kK K/

. testt (CIsNINY -1,
testt(TsNsM) t-tasth(TsNsM).,

/KRR KK A A A K KKK K KKK K K KKK KRR AR KR/

/% x/
/% denblocks(AyBsCrDl) and genblocksl1(AsRyC»D) x/
/% are routines to form 3 list D of two-block x/
: /% partitions that are maximally skewed. A is x/
/% the number of partitions and both B and C are %X/
/%X counters., x/
/% x/

ZXXRRAKACK KA AR A KK KR AORACK AR AR KKK KA KKK KKK KKK KKK/

genblocksi{(ZyZrMr(X])) t-detname(ZyB)rsee(R)»
read(X)rseenstest2(X).

senblocksl1(ZyNsMryCXiL]) ! -datname(NsB)rsee(R)y
read(X)rseensdenblocks(ZsNsMrL) .,

genblocks(ZyNyMyLXiL])) ¢ ~getriame(NsBR)rsee(B) »
read(Y)seeny
deotarart(ZsNrlrTeY) s ToLX1s (Z=NsL=CIiN1 is N + 1,
genblocka(ZyN1is1sL)),

indhibr-

96

denblocks(ZsNsMsL} ! -detname(NsEB)rsee(B)»
read(X)sseenrsdetarart(ZyNyMsLsX).

7B AAOK A K K AR A KK K A KKK KK K KKK KK KKK K KoK KKK K ok KKK KK XK/

/% X/
/% test2(LXIL]) is 3 routine to test if the X/
/% length of each list X in [(XIL] is less than 2 X/
/7% x/

ZRRKKKKRKKK KK KA KKKKKKKKKKRKKKKKKKKKKKRKKKKKKKKKKKK/

test2(LI) i1,
test2(LHITI)!-length(HrY)» l»YI25test2(T).

ZRRKKKKAOKKKKK KKK KK RKIOK KKK KKKKKKKKKKKKKKKKK KKK KKK K/

/% x/
/% getarart(AsBsCyDyE) returns E 3 maximally X/
/% skewed two-blochk rartition. X/
/%X x/

ZRRKKKKKKKKIK KKK KK RKKKKKKKKK KKK KK KKK KKKKKKKKKKKKK/

detarart(ZsNe2yCIsX) -1,
getarart(ZyNoMyLCX1IL1J,CXIL])I~-M1 is M+l
getblock (ZyNyM1sLX1dsXeLl)y
N1 is N+lrdetarart(ZsNisMirL1isL).

ZEREERKRKKKAE KKK KEK KK KKKKKKKRKKKKKKKKKRKKRKKKKKEKKK/

/% x/
/% getblock(AsBrCryDrEsF) 3nd detblockl (AsByCrLsE) %/
/% generate a3 block of the rartition, X/
/X x/

7 KRR AR A K AAOK A A KKK KK KKK KK KKK KKK KKK KKK KK KKK KKK/

setblo¢k(Z,NvaX}EH:TJ,EJ):—1ensth(EH:TJvY)v
Y1 is Y+1»N2 is Y1/2y
getblockl (CHITI»0yN2yWsV)rconcat (CWIYLUIWX),

detblock (ZsNsM»LXI»CHITI,CHLIT1]) ¢~
lenath(CH!TI»Y)rY1l is Y+19N2 is Y1/2»
getblockli (CHITI»OrN2sWsV)y
detblock (ZyNsMsy[XLIL11sHLI»T1)
formsome(CWsVIyCX1iL1I9X),

getblockl (HsN2sN2,CIrH) -1,

detblockl (HyNyNeXsH) =1,

detblocki(CHITIsCyN2yLCHITL1IsV)-C1l is C+1,
getblockl(T»C1sN2,T1sV),

ZRRKARKRARARK:CRRRR AR KKK KKK A KKK KKK KKK K KKK/

/% x/
/% detname(NsB) is a routine to form the file x/
/% name B=pNsy where N is a number. x/
/X x/

7R A AR K A AR AR AR KR AR AR A KKK AR AR R KKK/

DI e e maay o d

R 3

— et

97

detname(Nr»B)t-name(NsM)rsconcat(L1121+MsV)»
name{(BrV)sy!.

ZRERRRKRAKERKKKERKE KKK KKK KKRER KKK KKKKKKKKRKRKK/

/% x/
/% formsone(AsyByC) forms 3 Partition C from two %X/
/% blocks A and B. x/
/% x/

V22 2222222332023 8232382282303 333333233 d e V4

formsome(LWsVIsLXIsZ) i -formsome(CWrVIeX»Z),

formsome(CWsVI»LAYRIYLX2:L2]) t-concat(WrAsXZ)y
concat(VsByL2),

7 RKERRACKACK KK AR A KK KK AR KK AR K KKK KKK KK KKK K KKK KKK K/

/7% x/
/7% formrartition(XsY) inruts a3 list X of Y two- X/
/% block partitions. Each rartition is a list X/
/7% containing two lists or blocks. This routine X/
/% will form 2Y files such that each file X/

/% corresponrds to a block in a rartition. Hencerk/
/X Y cories of the file dbase will be cresated. X/

/% These new relations will only contain data X/
/% values not found in the partitions. X/
Vg x/

ZREREKKKKERKRKKKEKKKKARKEKKKKARRERKKKKKEKKRKKKRK KKK/

formepartition(CLXiIL1sF)i-see(dbase)r
formrartsl(CXILIsy1sP)»
seenstold.

ZRKREAKAKK KA KRR KRR AR KKK KRR KKK KKK KK KKK KKK KKK KKK K/

/%X x/
/% formeartsl(CX{LIsRyF) Performs two different X/
/%X tests on 3 row from the relation. Test 1 X/

/%X determines if the last row in the dbase has x/
/% been Processed. A true response will initiatex/
/% test 2. A false response will call the routinex/
/% partl, Test 2 determines if the last rartitionx/
/% has been processed. A true response will x/
/% terminate the routine. A false reseronse will X/
/% increment the counter R and call formeartsli, X/
/% x/
V8 2 2333223333233 33333332383 3333 3338323333323 3 82221 %94

98

s an ans kS hs il mn t

formpartsi(CXiLIyRIP){-read(G)»
(Gaend_of_fTiles(L=CI3R1 is R+1»
close(dbase)rsee(dbase)sformrartsi(L»R1sP))}
Ppartl(X»CXiLIsGrRr1P)).

Partl1(LYINJsCX!ILIyCAIBIYR»QyP)¢~-LZIKI=Y>»
compare_the_value(ZyLA!B1sPsl)>
name(RrF)rname(QsE)»
concat(FrEsW)rconcat(L112]rUWsC)rname(IsClrtell(l),
writeturle(Z»LAIBI»CH! T rwrite(fH!TY)swrite(’.’)y
nlsformrartsi (CXILIsRIP),

Lasa

Ve 22822238 2332092303833 823233332333433333 23333234 ¢ %4 1
/X x/
/% parti(LsL1yL2»RyQsN) rlaces the turle L2 from %X/
/% the file dbase into the file »RQs which is thex/
/% Qth block of rartitiomn R. This is asccomelishedx/
/% by testing for membershir of 3 data value in %X/
/% block Q@ of rartition Ry in the turle L2 and x/
/% writing this into the correct file. X/
g x/
V2 2223222323032 3033 3333338333333 3333333333880 2 2% ¢ 94

P3rt1(LYINIyCXILIyCAIBRIIRy»QeP) t=length(YsN1)syN1=1,
partl(NsCXILIrCAIBIsRs2sP),

PBrti(LYINIsCXiLIsCA!BIsR»Q»P)¢-CZiKI=Yy
Parti(CKINI»EXILIyCAIBIsRr1sP).,

ZRRACKA IR R A AR A KK KK KK K8 20 0K K KK KK 35K 3K K s ok koK Kok ok ok Kk /

/% x/
/% writeturle(ZsyLrL1l) returns 3 list L1 which is %/

/% a3 subturle of the turle L with the dats value %/
/%X Z removed. x/
/X% x/
VA 322222232222 3333932 38820303+ ¢83 328030433433+ 74

writeturle(ZyLZiEIYR) =1,
writeturle(ZyLAIBI»[A!IK]) i ~writeturle(ZyEyK).

ZREKRKRKERKRKKREKRKERKKKKRKKRRKRKKK KKK KRKKK KKK/

/%X x/
/X removec(XsLrL1l) is 3 routine to remove the *x/
/% attribute suymbol X from the list of attribute %/
/X sumbols Ls and return this new list L1, x/
/% x/

7R A KR A A A A A KKK A K AR A KKK R K KKK KKK KKK/

removec(XsL1sLI) =1,
removec(XsCXiILIsL) -1,
removec(X»LHITIyLHIL1]) ! -removec(XsTrL1).,

i

-
e
*
-

At <8 5 mnnn

99

V4232233332823 o3 ¢33 3232233333338 3333303 83323383 94
/X b ¥4
/% compare_the_value(ZsL)N+C) determines if Z is %/
/% the Nth data value in the turle Ly using the X/
/%X counter C. x/
/% x/
V2 323230933233 0338023339233333383333333333¢9333833 % 94

compare_the_.value(ZsLIsNINI-fail,

compare.the_value(ZyLZIBIsNsN) =i,

compare_the_value(ZyLAIEIsNyQ) -
N-QGrQ1 is Q + 1»1y
comrare_the_value(ZsyBsNsyQ1),

/AR K KA ACK KKK A A AKX K KKK KKK KKK KKK KKK KK KKK KX/

/% x/
/% formfunction(AsRyCsyI') i3 3 routine to form 3 %/
/% product of sums formula which contains all ¥4
/% information necessars to denerate the x/

/% functional derendencies with attribute C on X/
/¥ the right side. This sroduct of sums formula X%/
/% is stored in the file EC where C is the X/
/7% attribute sumbol. A is the list of ordered X/
/7% attribute sumbols with C removed. B is the x/

/% number of cories of the relation. D is a x/
/% counter used to access the correct corw of thex/
/% relation. X/
/X */

ZRAAHK KR AR AR K KA AR AOK KKK K KR KKK KKK AR KKK KKK K KKK KKK/

formfunction{QsMsNsC)i-tell(temr),
detturlel(NsX)y
detturle2(NsZ)»
formean(XsXr»ZsQsQrMsNsC)» !,

7 REKKKKKARKKKKAAKEK KKK KKK K KKK KKK KKK KKK KK KA KK KKK K/

/% x/
/% dgetturlel(NsX) returns X a turle of file »N1 x/
/% if all the tueples have been read X = [3. x/
Vg 3 x/

ZRRERERKERKKKEKKEKKKKEKKRKKKKKKKEKKKEKKRKKRRKKRKKK/

getturlel (NyX)i=-name(NsZ)ryname(lsY)y
concat(ZyYrW)sconcat(L112TrWeM)»
rame(PyM)rsee(P)rsread(X1)y
(X1=gnd_of.filesX=2L]rseeniX=X1)»!,

i |

100

ZRARAKACR AR A A0 A0 K A A KK A K R AR K KKK KK K ok KKKk K/

/% x/
/% detturle2(Ny»X) is identical to dgetturlel x/
/% except file PN2 is accessed. x/
/% x/

ZRBAA KR KR A ICRAA KK KK KKK KKK KKK KKK KA KKK KKK KK KKK/

getturle2(NsZ)i-name(NrX)rname(2+Y)>
concat(X»YsW)rconcat(C112]sWeM) >y
name(PsM)rsee(FP)rread(Z1)y
(Zl=end_of.filesZ=ClrseeniZ=Z1)s!.

/***********X*************************************/
/% x/
/7% formean(AsByCslyEsFsGsyH) is 3 routine to test %x/
/% Por non~identical dats values in the turles x/
/7% from Gl and PG2. Originallws A=R from =Gl» C X/
/% is 3 turle from G2y D ard E are lists of X/
/¥ attribute sumbols with the swymbol H removedr X/
/% and F is the number of data files. If EB=C» nox/
/% functional derendencies exist and formean willx/
/% ?3il, If the turles are differents the firgst X/
/% data values of each turle are tested for x/
/% equality, If thew are eaualsy the rest of x/
/% turle B will rerlace B and the rest of the x/
/% turle C will reelace C in the next call of x/
/% formean., If the data values are different, x/
/% the attribute sumbol asssociated with these £/
/¥ values is stored as a3 literal in 3 sum in the %/
/¥ file temr., If there are rno othe~ data values %X/
/% in B and C» testturle is called. Otherwise X/
/% formean2 is called., X/
7% */
V2323232232223 23333 3338823333203 8838333332 ¢¢23332394

formean(PrsLXILIyCZINI+sQRrCAIBIoMeN»C) -
CXiL1=CZ!K]s1yPa3il.

formean(PsLXILI/LZIKIsQryCAIBIsMsNsCII-X=Zy !y
formean(PsLsKrQrBsMsN»C)s !,

formean(FPrLXILI»LZIK1sQrLAIBIsMsNsC)H S~
write(A)s(L=C1»
getturle2(NsZl)rtestturle(PrX»Z1yQrLA!BIrMIN»C)}
formean2{(FsLsKsQsRsMsNsC)Is !,

.‘.'-'
SRR B

e e AR

101

V2323233322323 283323233 3333333333338 3333838383 3333 ¢% ¥4
/7% x/
/% formean2(As»BrsCrDIEsFyGrH) is 3 routine similarx/
/% to formean, The onlw differences are that A X%/
/% is the comlete turle of »Gly B and C are rartsk/
/% of the turles from rGl and »G2y and E is the &/
/% associated rart of the attribute list. Alscor %/
/% if the subturles B and C are eaualr there willk/
/% be no more literals rlaced in the sum stured &%/
/X in the file teme. x/
/%X x/
7 2302 2 30 2 3K 3 20 090 30 58 20 30 39 30 30 200 3K 350 350 20 200 5K 50 00 2K 00000 KKK R KKK KKK/

formean2(PsLXILIsCZIKI»yQrCAIBI«MINIC) -
CXiLI=LZiK)rwrite(’s’)ynly
detturle2(NryZl)stesttumrle(PsPrZ1,QsQsMesNsC)r!.

rormean2(PrLXILIyLZIKIrQyLAIBIsMINsC)=X=Zy iy
formean2(PrLsKsQsBsMsN»C)s !,

formean2(PsyLX LIy LZIKIyQrCAIBIsMsNIC)i=write(+')y
write(A)r{L=Llywrite(’',’)snly
getturle2(NsZl)rtestturle(FyPsZ1sQrLAIRIsMINsC)
formean2(PyLsKyQsBosMsMNs»C))»!.,

ZRRKKKKKEKKEKKRKK KK KAKKKRKKKRK KR KKK KEKERK KK EKKK KKK/
/X x/
/7% testturle(AsBsCyDyEsFrGryH) is 3 routine to x/
/% test if there are rmo more turles in the file %/
/% =G2, If this is trues testturlel is calledr x/
/% otherwise formean is called Wwith the rmew turlex/
/% € from G2, X/
/%X x/
£ KA KK KK A A K HOK A K K 3 K 3 2k 3 oK 3 3 3 2K o 3 2K K K Kk K ok Rk ok ok kKK /

testturle(PsXr»ZyQrsAsMrNIC) t-Zal]sdetturlel (N»X1),»
testturlel (X1yX19Z»QyQsMsNsC)s !,

testturle(PrXvyZsQrArMINSC) ¢-
formean(PsPryZrQrQsMsNsC)>» !,

Va2 22 v 2233333353233 33333 8823833333203 3833333 3¢¢¢3 94
/% x/
/% testturlel (AsBsCryDsE»FrsBrH) is 3 routine to X/
/% test if there are no more turles in »Gl. If %/
/% this is truer the file temr is closed and the %X/
/% rouytine andtempr is called to generaste the POS %/
/% formula. If this was the last data file» the %/
/% routine chandeit is called to delete any x/
/% extraneous sums in the POS formula. Then x/
/% formalrh is called to form the lodgical AND of X/
/% esch formula generated bw each data file. If x/
/% this was not the last data filer the routine x/

102
i /% chandeit is called to absordb an extraneous x/
. /% sums in the POS formula and the rext data filex/
‘i /% is examined. x/
. /7% x/

Z KRR AK KRR AR KA R AR KK AR KRR AN K KR KKK KRR KKK KKK/

]{ tegtturlel(PyXrZsQrAsMIN»C)t=-X=Llrtoldy

- see(tempr)rread(Y),

‘ andtempr (Nr»Y) s (N=Mschandeit (N)»
formalrh(MsCrerl)iN1 is N+tlschangeit(N)
formfunction(QsMsNLsC)) s,

o testturlel(FsyXr»ZrQrAsMyNIC)H -

3) detturle2(NvZl)ryformean(FsFsyZ1lyQsAsMsNsC)»!.

/7 KA A K K K K K K K K A KK KKK R KKK KKK KK KKK KR KKK/
/% x/
/% andtemp(NsX) inputs 3 sum of attribute sumbolsk/
/% Y from the file temer» and calls andteme2. x/
/X x/
VAL 22332333333 833 333202283333 sddRIEI ¢S EEEEEs et Vg

andtemer(Nrend_of_file) -1,
Fo andtemp(NyX) i-detname(NsB)stell(R)rsurited(’ (/)
, write(X)ruwrite(’))rsread(Y)randtear2(NsY)s!.

7RRREKEEEEKKKKKRKKKKEKKKKKKKKKKRKKKRKKKKKKKKKKKKKK/

Vg | x/
/% andtempr2(NsX) writes X 3s 3 product of the X/
/% POS formula stored in the file eN. x/
7k x/

ZXRRERAKAK AR K AR A AR A KK KKK KKK AR KKK KKK KKK KKK RKKKKKK S/

andtemr2(Nrsend_of_file) -
nlrseenstolds !,
andtempr2(NsX)t~write(’ &/)swrite(’ (%),
write(X)ruwrite(’)’)rread(Y)rsandtemr2(NyY)»!,

V4 3032023323333 3833333 3838342323332 309283¢023¢¢3¢ 44
/% x/
/7% formalrh(MsCresN) inputs the number of dats x/
/% files My the constant er» the attribute swumbol %X/
/% Cr» and tests if the PN contains the last FOS x/
/7% formula., If this is truer the formula is x/
/% stored in the file eCs, Otherwise X = the FOS X%/
/% formula and formalephli(XsMrCresN) is called. X/
Vg | x/
ZRR AR A AR 20K 50 o G 0 02000 200 KR I 200000 3 K oK K K K KK K KKK/

103

formalrh(M»CrerN) i-M=Nrdetname(NrV)rsee(V)y
read(X)rseenrname(CrZ)rnamel(erK)»
concat(KsZsB)rname(lLsB)rtell (L) rurite(X)
write(’,’)rtolds!.

formaleh(MrCrerN) i -detname(NsV)rsee(V)sread(X)rseen:s
N1 is Ntlsformalphl(XsMsCresNLi)»!.,

VE 3233233332233 3323233833333 23383232333 ¢883333 ¢ 74
/% x/
/% formalrhl(XsMsCrerN) is 3 routine similar to %/
/% formaleh excert that X is the list containing %X/
/% 3all of the FOS formulas for the =N data files.X/
/7% this final list is stored in eC if the last x/
/% formula is in X» otherwise formalrhl is calledx/
/X x/
/2R OK A R K 3 K 300 3K K K OK KK K KKK K KKK KR K KKK K Kok KKk KK/

formalrhl (QArMrCrerN)i-M=Nrgetname(NsW)rsee (W)
read(X)rseensconcat(QsXsZ)»
name(CrL)rname(erK)scorncat(KsLsB)>»
name{(DsB)rtell(D)rabspPr(ZsyLIsF)»
write(F)rwrite(’,’)stolds!.

formalrhl(QyMsCrerN) ! -detname(NyW)rsee(W)y
read(X)rseensconcat(QsX»2Z)»

N1l is N+isformalrhi(ZsMsCrsesN1)y!,

ZHKKRRAKAOKK KKK ARAKAKK KK KK RK KKK KK KKK KKK KKKKKKKKKKRKRK K/

/% X/
/% chandeit(N) converts the P0OS formula in the X/
/% file N to 8 list of list form bw callindg x/

/X nrarse. Alsor ang extraneous lists are deletedx/
/% by the routine absepr. This new list is storedx/
/% in the file »N adain., x/
/X x/
V2333322333333 33332233383 8303332828332 283333 ¢3 ¢ %% % 94

chandeit(N) !-name(NrZ)rconcat(L112)sZrW)rname(PyW)
see(P)rget(C)raetstr(CrG)rseenrnrarse(FrGs+L1)>»
abspr(FyCIvU)>»
tell(P)rwrite(W rwrite(’'.’)stolds!.

»
i

,..-.<4_.

104

ZRACA K 03000 20 0 K0 A 3K K S o0 0k 300K 3K 2 80 2K 3K 3K A 80 3 200 3¢ 200 3K 30 K 3 8K ok K ok K Kk ok ok /
/% X/
/% convertros(C) inrputs the list X of lists form %/
/% of 3ll the POS formulas stored in the file eC.x/
/% The list X has all extraneous lists absorbed X/
/% bw the routine abser. This new list Z is x/
/% stored bw the 33 a POS formula Q in the file x/
/% eC. This formula @ is translated into a3 SOP %X/
/7% formula by simp(QsK). Then K is stored in the %/
/% file eC. The ascii code for K is inerut and x/
/% converted to 3 list W of lists form. Then thex/

/X extra lists are absorbed by abser(WsLIyV). x/
/% Finallgy the list V is stored in the file eC. %X/
/% X/

7 RRKRARAKRRA KKK KA K KA KA KKK KR KKK KKK KKK KKK ARK KKK KK/

convertros(C) i-name(CsM)rmame(ersN)rconcat(NsMsF)»
name(LsF)rssee(lL)yread(X),
seensabspr(XsLlrZ)rtell(L)rwriteea(Z)y
toldrsee(lL)sread(Q)rseeny '
simpP(QeK)rtell (L) rwrite(K)stoldy
see(L)rdet(S)rgetstr(SsNl)rseeny
rarse(WeNlsLl)rabser(WryLIrV)rstell(L)rwritael(V)y
write(’.,’)rtolds!.

77 KKK K A 3 20 3K 3 0 400 300 000K 0 KK KK KK KK KRR KKK KKK/
Vg x/
/% writeeq(ld)s writeeral(A)s writeea2(A) inruts a X/
/% list A of lists and stores & FOS formula in x/
/% the file eC that corresronds to this list. x/
/X x/
VA 2232337 P 2800333323283 3283323233332 38384333894

writeea(CXiL1)i-write(’' (‘')sLYIKI=Xrwrite(Y)y
writeeal(K)swriteea2(L)y!,
writeeal(Ll)i-write(’')’)y,
writeel(LY!K1)¢-write(’+/)rwrite(Y)ruriteeal(K)sy!.
writeea2(Ll)i-write(’ ¢ ")s!l.
writeea2(CXiLl)~urite('8/)ruwrite(’(’)yLYIKI=X,y
write(Y)ruriteeal(K)»
writeea2(L)»!,

g 2222322823033 3 2830030332000ttt sty

Vg x/
/% Nearse(Z) returns Z @ list of lists for a P0OS %/
/% formula., x/
/% x/

ZRRKKAKREKRIAK KKK KKK KKRKK KKK KKKRKKKKKXKK KKK KKKKKKRKK/

YT
-~

Rinaiaten i

105

nrarse(Z) -=> nterm(X)r*"&*snrestrarse(Xr2).
nrarse(LZ])--rnterm(2).

ZRERKERKEREEERAKKKKRKKKKRKAKRKKKRK KK KKK KKK KKK/

/% x/
/% Nterm(Z) converts a term in the POS formula x/
/% into a list. x/
/% x/

ZRRARAK R AR KK KKK KKK KK KR KK KKK KKK KKK KKK KR KKK KK KK/
nterm(Z) --> ndelimrntoken(X)sndelimsnresterm(XsZ)s

ZRAIRKRAKKAKKAKAKK KRR KKK KKK KKK KKKRKAIOK KK KKK KKK KKK KKK/

/% x/
/% Ndelim removes the followindg symbols from the X/
/% list created by nterms &s+r e (»). x/
/7% x/

/KRR ARACOK KRR AOK K K AR K KK KKK KK KKK KK KKK KR KKK KK KKKk KK/

o,

ndelim —-=> "+°%,1,
ndelim —-~> * "4,
ndelim ==> "(%,!,
rndelim -=> *)"y!,
ndelim -~> L[ls!.

ZRAKRKAK AR AR KKK KKK KKK R K KKK KK KK KKK KK KKRK KKK/

/% x/
/% nresterm(XsY) sets the first element of list %/
/% Y to the element x/
/% Xy and calls nterm to find the rest of the x/
/% list Y. x/
/% x/

ZRARRAAR IR AR AR A AR AR ACK A AR K AR A A AR A KK KKK KK KKK KKK K/

nresterm(XsCXIR]I) --> nterm(R).
nresterm(XyCXJ) --> LC1.

/RRRRRKKKREKKKRKKKAREK KRR KKRRKKKREK KKK KKK KKKK KKK/

/% x/
/% ntoken(Y) returns an atom Y for 3 member of x/
/% the ascii list. x/
/% x/

/REXRKKKRRKRKREAR KK KKK KK KR KRR K AR KKK KKKRKKKKEKK/

ntoken(Y) ==> [X1syLP26]r{rname(Y»LXr19261)2»!,
ntoken(Y) ==> [XJr<{name(YsyLXI)rY\==’8’2y!,

e i gt e R b

TR, T TR T
NS IO

..,r..

. T

o —r -

CaT m e

106

Z7RAAR AR A 00 K A KA K A A KK K oK K o 33K 3K K o ok oK KK kK Kok /

Vg X/
/% nresearse(Xr»Y) sets the first element of the X/
/% list of lists Y to be the list X» which x/
/% corresronds to the first term of the POS x/
/% formula. nresterarse then calls nparse. x/
/% X/

7R RKKAR K KRR KA KA KRR KKK AR K KKK KR KAKKK KKK KK KKK/

nrestrarse(Xy[(XiIR1) -=> nrarse(R).
nrestrarse(XyLXJ) == LCJ.

7KK K AR KRR AR AR KKK KR KKK KKK AR KKK KKK KK KKK/

/7% x/
/% formders(C) writes all the functional x/
/% derendencies with attribute C on the right x/
/% side that exist im the relation into the file %/
/X Prora. x/
/% x/

77 800KK K K 2 AR KK K K K K 3 K R K R KK K KK K KKK KRR KKK KR KKK/

formders(C)i-getlist(CryLXiL])y
tell(errora)rformdersl(CrCX'IL1).

Vet 233030333333 333 2008830080088 232238333333333% 74
/% X/
/7% formdersi(CrL) inputs am attribute C and a2 x/
/% list of lists L. L is 3 list of all the left %/
/% sides of the functional derendencies in the x/
/% relation. This calls getterm and itself untilx/
/¥ until L is an empty list. x/
/7% X/
7RI A A0 K A K A A K K KK 3 3 3 ok K KK K 3K KK KK K K K Kk K/

formdersl1(CyL1)i-1,
formdersi (CrLXiL])!~detterm(CrX)ryformdersl1(CrL).,

Z KA A AR A0 0 A A A N K 2 K K KK R KKK K KKK KKK/
/% x/
/% detterm(CrL) inrputs C the right side attributex/
/% sumbol and 38 list L of attributes for the leftx/
/% side of 3 functional derendency. x/
/X x/
Ve 2222203008833 33233222383 83¢3 3388388333333 8 3388334394

detterm(CsyLZiIK1)!~K=2llrwrite(2Z)y
write(’s>’)yurite(C)ruwrite(’,’)snl.
gotterm(CrLZ!IKI)i~write(2Z)swrite('’)rdetterm(CsK).,

107

7KK AR KK KR KK AR A K AR AR K KR KKK KKK KKK/

/X x/
/7% getlist(CrL) inPuts am attribute C and returnsx/
/%X 3 list of left sides for functional x/
/% derendencies that was stored in the file EC. %/
Vg x/

ZRREREKRERKKRKKKKRKKRKKRKKKKKRKKKRKKKKKR KKK KR KKKK/

detlist(CrX)i-rname(CrG)rconcat(L1011+sGrV)y
name(MrV)rsee(M)rread(X)rseen.

ZRHKEKK KKK KKACKK KKK KK KKKKKEK KKK EKRKKEKKRKKKKKKKKK KK/
/X x/
/% clearfiles and nosubscrirts are routines to X/
/% delete the data files wused irn the functional %/
/% derendency deneration routire. x/
/% X/
7 KRR K KK A KKK KK KK KK KK KKK K KK KKK AR KKK KKK KK KKKk /

clearfiles(NsX)i-name(XsZ)scorncat{(L1011sZsW)»
namel{WlisW)rtell(Wi)rrename(WilrLl)»
tell(tems)rrename(temrsLl)ynosubscrirts(Ns1).,

rnosubscrizsts{(NsM) t-name(MsyM1)
concat(L112]yM1/M2)rcoOncat(M2yL49]9M3)»
name(M4sM3)rtell(M4)ryrename(M4a»C1),
concat(M2yLSO0IsMS) yname (MO MS) »
tell(Mé&)yrename(M&yLI)yname(QyM2)»
tell(Q)rrename(QsyCI)y (N=M3Z is M+l
nosubscerirts(NsZ)).

7 RRARA AR A AK KA KK KK KKK KK KKK KK KKK KKK KKK KKK KK/
/% x/
/% The SOF formula to be sut in Blake Caronical X%/
/% Form is rerresented as a3 list £ of lists and x/
/% each of the lists in F correseronds ta 3 term X/
/X in the SOF formula. . The method of iterated X/
/% consensus is used, doitall is a3 rrocedure to X/
/X time the routine for srorositional lodic to x/
/% BCF translation. doit is a3 routine to read x/
/7% in the eprorositional logic statements and x/
/% return the BCF of them. doitl converts the X/
/% prorositions into a3 SOP form. befs inputs 38 X/
/7% list of lists and outputs the BCF of this listx/
/% ags a8 list of lists. parseit rparses the SOF X/
/% formula into a3 list of lists. x/

108

/X x/
/%X keus is a routine to ineput the information x/
/% needed to locate the kews of a relation., The X/

/% BCF form of the functional derendencies must X/

/% be stored in the file BLAKE. This routine x/
/%X also srints out the time for the execution x/
/% and the kewys, L is the attribute sumbols. X/
/% x/

7 R A KK A A S KK KK KK KK K KK R KK KO KKK KKK KK KK KKK KKK KKK/
solve_for_keus(L)!-doitallskeus(L).

doitalli~-timeO(T)rdoitstimelO(T1)sTime is Ti-T»
write(’Time for bcf is ‘Yenly write(Time)ds
write(’'ms.‘)ynl.
doitt-see(rrora)sread(X)s (comrare(=rXrend_.of_file)s
trans(XrZ)stelli(dat)s
write(Z)rdoitlrynlsseenstoldsrarseitsbecfs).
doitli~read(X)y(compare(=sXsend_of_file)’
write(’'+’)y
nrlstrans(XsZ)rwrite(Z)rdoitl).
rarseiti-see(dat)rdet(C)rgetstr(CrX)»
rarse(PsXrLI)»
tell(list)swrite(P)swrite(’.’)rseenrtold.
befsti-see(list)rread(X)rseenrsbef(XsZ)y
tell(blake)rwrite(Z)rwrite(’.’)stold.
keuws({lL)i-timeO(T)rsee(blake)rread(Y)rseeny
find.the.kess(LrYsyN)rytimeO(T1l)s
Time is T1-Tywrite(’'Time for kew search is ‘)
write(Time)rwrite(’ ms.’)rnlrwrite_kegsl(N).
befit(CXILIsLZIKI)I-timeO(T) >
bef(LXILILZiIKI)»timeO(T1)y
Time is T1-Tywrite(’'TIME IS ‘Jrnly
write(Time)rwrite('ms’).,

ZRRRKKKRKKKRAKKKKKKRKAK KKK KKKKK KKK KKK KKK KKKRK/

/X x/
/7% bef(ArB) returns B = BCF(A). x/
/X% x/

ZRRAAKAR AR KK AR A AACKAOR KR KKK KKK KKK KKK KKK KKK KKK KR KKK/

bef(CXILIyLZIKI)i-testit(CIsEXILIsMIN)»
befl(CXILI»EMIsN»CZIKT) .,

109

ZAKKEKKKKKKEKKKKKKKKKKKKKKKKKKKKKKR RN KKRKKKKKKKKKKX/

/% x/
/% befl(AsEyCrD) denerates a list of consensus X/
/X lists between the list C and the list of x/

/% lists Bs The list of consensus lists and the %/
/% list B of lists are tested for absorrtions. x/
/% The new left rart of the list A alona with thex/

/7% next list of B is determined and befl is x/
/% called again., The BCF of the list A of lists %/
/% is returned. x/
/X X/

ZRKAKKEREKRKKKAK KKK KKK KKK KK KKK KKK KKKRKKKKKKKKKKKKKK S/

befl(CXILIsEMIRIILIEXILT).,
befi(CXILIyEMIRIPNSILZIK]) t~consc(LMIRIsN+C)»
abspr(CyLXILIY»LYIS1)

(member(NsLYiSI)rgstarti(NsLYISIrMisN1L)>»
bef1(LYISIsM1sNL1SCZiIK1) 5

reverse(CHIRI»CX2IL2])»
testit(CX2IL2TsLYISTIsMLsNL) >y
befLl(CYISIyMIsNLIYLZIKI)),

ZREKKKKKKKKKERKKKKKKKEKRK KK KRKKKRKK KKK KKKKRKAK KKK/

/% X/
/% abspr(A»ByC) checks for absorrtions betuween X/
/% the list A of x/
/% consensus lists and the old list of lists B. %X/
/¥ C is the new X/
/7% list of lists formed after 311 asbsorstions. x/
/% x/

ZREERRKKKKKKKKKKKKKEKKKKKKKKKKKKRKK KKK KKKKKKKKKRKK/

abser(LYISIrLI»[HITI) ~abser(S»LYI,CHITI).,

abspr(LIyCXILILCXILD).,

abspr(LYISI»LXILIYLZIK]):~3bsr(YsLXIiLI»IX1iL11)y
abspr(SeyCX1IL11sLZiIK1),

ZRRKKKRKAKAKKKKKKKKKKKEKKRKKKRKKKKKKKKKKKKKKKKKKKKKRR/

/X X/
/X starti(AsByCrD) determines where the old next %/
/7% list A is in the new list B of lists» and x/
/% returns both the new next list D and the new X/
/% left part C of the list of lists. x/
/% x/

ZXERKEEKKERKRRKAKA KKK K KKKARKKKRRKERR KKK KKKERKKKRX/

110

starti(NsL1,C1sC1).

startl(NsLY!ISIyCM1IsN1) i=N=Y>
M1=NsCN1iL1=S,

starti{(NsLY!SIsLYILIIN1)¢-start1(NsSrLsN1),

5:5 2 00K K 350K 2 KK K 20 3K 2K 3 S 0k K Ko KKK K R KK K KK KK KKK KKK KK KKK/
K. /% x/
/% testit(A»BR»C»D) determines if the first list x/
/% of the list A of lists is in the rnew list B. X/
/% The new left rpart €C and the new next term D x/

i /% is returned. X/
§ /% X/
. ZKEKKRAK KKK KKK A KK KK KK KKK KK KKKK KKK KKK KK KKK KKK KKK KKK/

testit(CX2IL2I>LYISIsyM1lsNL) i~member(X2,LYIS1),

startl(X2yLYISTIrMLsNL) .,
testit(CX2iL2]»LYISIsMIsNL)i-testit(L2,LYISTsMLisNL).,
testit(LI,»LYISIsYsyX)$-LXiL1=S,
testit(CI»LYIsLYI»C1).

ZRKEKKRKKKKKKKKKKKKKKKRKKKKKKKKKKKKKKKKKKEKRERR KRR K/

. /% X/
. /% reverse(AsB) returns B the reverse order of A X/
5 /7% x/

/EEKKKEKKEKKKKK KKK KK KKK KKK KK KKK KKKKK KK KKKKKKKKKKKKK/
reverse(CX1,LX1).

P reverse(CXsYIsLYrX1).

k. reverse(LXIRIsL){-re arse(RsLi)scomncat(Ll1sCXIoL).,

ZIOKAOKR AR ACK KKK KK KKK K KRR KKK KKK K KKK KK KKK KKK KKK KRR K/

/K X/
/% concat(A»ByLC) returns the list C» comprised x/
/% of the list B arrended to the list A. x/
/% x/

Z K RAK I AR ACK KA KKK A AR K KK KKK KKK KKK KR O KK KKK KX KKK/

corncat(ClsLolL).,
concat(CLFIL11,L2yCFiIL3T) ¢~
concat(L1i,L2,L3).,

7 XRRKKKKKKKKKKARKKKAKKKKKKKKK R KKK KAKKKKKKKKKKKKKK/

/% x/
/% detstr(AsB) returns a list of a3scii x/
/% characters. x/
/% x/

ZRBAKKRAKKAR AR KKK KKK KKK AOKKRKKKRKKKKK KK KK KK KKK KRKKKRK/

My Rl
R

. -
fsad

- e

111

detstr(246,C1) 21,

detstr(CsLCIR]) t~det (C2) rdetstr(C2rR)# !,

ZRERIKRAKK KR KK KKK AR KKK KRR KK AR KAKRK KKK KRR KK KKK KKK/

Vg 3 x/
/7% time is a routine to call the internal x/
/7% timer of the sustem. x/
/% x/

ZRREXKERKKKKKKKKRKKREKKKRRKKKRKKKKKKKKKR KKK KKK KKKKXKK/

timeQ(T)i-statistics(runtimer»CTy_1).
timel-statistics{runtimesyl_»TI)rwrite(T)snl.

ZRRERRKKKKKKKKRKKKKKKKRERRKK KKK KKKKKKKKKKKRRKRKRK KK/

/%X x/
/7% ned(AyB) is 3 routine that returns the x/
/% comrlement B of a L ¥4
/% boolean exrression A. X/
/X x/

ZRERKKEKKKEKKKKKKRKKRKEUKEKKKKKKKKKKKKKKKKKKKKKKKKK/

ned(X&YrA+B) i~res(XrAdrrnas(YsB) s !,
negd(X+YrAZB):-nes . X:A)sred(YrsB)» !,
ned(X sY)3-Y=Xy!,
negd(XsY)i=Y=X" o1,

ZREEKKKKRKKKKKKEKRKKKKKK KKK KKKKKKKKKKKRKKKKKKKKKKKKK/

g x/
/% simr(AvyB) and mult(C»D) are routines that x/
/%X return the sum of sroducts form of a formula X/
/% that is in sroduct of sums form. X/
Vg x/

ZKAARACK AR N A K A A A AR AR AR K M Ak KRR KK KKK KKK KKK/

simp(XEXsX) i1,

simep(X+XeX) i1,

simP(X+YrZ)i~-simp(XrR)r3imp(YsS) s (Z)=(R4+8) +!,

simp(X&AY»Z)i~simP(XIR)va2imP(YsS)rmult(RsSsZ)s !,

simp(XsX)2~1,

mult(XeXeX) =1,

MUlt(A+ByC+DrZ) s~mult (A»C+DeY)y
MUlt(BeyC+DeX) v (Z)3(X+Y) o !,

mult(AZBrAYARR) -1,

ault(AZBsBrARB) -1,

mult(ArARBrARB) -1,

mult(ByARBrARB)!-!.

RULL (A+BrCrZ) t=mult(AsCorX)smuUult(ByCrY) s (Z)=(X+Y)r !,

MUlt(CrA+BsZ) t=mult (CrAyX) smuUlt(CrBoY)» (Z)=(X+Y)r !,

mMUlt(XsYrX8Y)S=1,

112

7RI ACK AR AR AR AR A K A KK KA K KKK KA KK KKK KKK KKK K KKK/

/% x/
/% trans(AyB) is 3 routine that translates a x/
/X propositional lodic statement A into a SOP x/
/% formula B. x/
/% : x/

ZARERKERKKKERKAEKKEE R KKKKKKKKKKKKKRKKKK KKK KKK KK KX/
trans(V=>YrZ) i-ned(YrW)rsimp(VEW,Z),

7 AR KKK A K AR K KK K KKK K KKK KKK KK KKK KKK KK KKK KKK KKKk

/% x/
/% 3bsr(AYByC) returns C» 3 list of lists X/
/X corresronding to 3 SOF formula. C is the X/
/% result of performing absoretion on the SOP */ 3
/7% formula B with the list A, A is a8 list and. x/ '
/7% B is 3 list of lists. x/ !
/X x/

ZRERKKKKKRAKKK KK KAKRKRKRKRKKREKIRKKKKKKKKKKKKKKKKKKK/

abser(LI»IXILICXILII=1,

absp(AYLI»LAT) -1,

absp(AYCXILIPCXILI)~sublist(XsA)»!.

absr(ArLXILI»LZIR]1) {-sublist(ArX)rabsP(ArLICZIRI)s !, f
absPr(AYLXILI»CXIRI) :-absr(ArLIR)» !,

ZREHKAHRK A KKK KKK A K KKK KKK KKK KK KK AORK KKK K KKK KKK K KKK/

/% X/
/¥ sublist(AsB) determines if the list A is x/
/%X contained in the list E. X/
Ve X/

ZRERKRKAEAKK KK KKK AOK KR KKK K KKK KKK KKK KKK KKKAKKKKKK S/

sublist(CXILI»LYiS])!-member(XsLY!S1), i
sublist(LsCYISI)v !,
sublist(LIsM) =},

ZREAKACKARACK AR AR AR AR A KKK KA KK AR AR KKK KKK KK KKK KK KK/

Vg 3 x/
/% member(AsB) determines if the element A is x/
/% contained in the list B, x/
/X x/

ZKKKKKAKAKEKRK KKK KKK KKK KKK KKK K KKK KKKK KKK KKKKK/

member(XyLXIRI)S~1,
member(Xs»LYIR]) {-member(X»R)rt.,
member{LIsX)i~1!.

113

/302002000 20 30 30 2 30 30 2 350 3 3K 00 0 200 30 2 300 26 2K 50 2 300 3K 30 oK K K o K K K KK K KK KK kK KKK K/
/% x/
/7% consc{AyBsC) returns a3 list C of lists X/
/% consisting of a3ll consensus terms between the X/
/% list A and evervw list contained in the list B X/
/7% of lists. List C consists of non-empty lists. %X/
/% x/
ZRRERERKK KKK KRKKKKKAEKRAEKKKA KK KKEKKRKEKRKKKEKRK K KKK/

consc(LXILI»YrLZIK1)~cons(CXILI»Y»CMiL1])>,
delete(CMIL11,CZiK1),

V2 223223203333 23 2323233308933 03¢ 2383332338833 3¢3% 94
/% X/
/% delete(ArsB) removes anvy emrty lists contained X/
/% in the list of lists A and returns the list of%x/
/% lists B which is void of any empty lists. x/
/% X/
7 KK K KK K S K KK K K K KK K K K K K K K KK KK R KKK KKK KKK KKK/

delete(CMIL1]IyCZIK]) t=(comrare(=yL1sCLI])
deletel (MyLZIK])#
comrare(=sL1yLI)yLZIKI=CMILIT?
Z=Msdelete(L1,K)).

deletel (MyLM1).

Vg 2223233808202 03882233323 33338 333823832333 383 8% ¢ ¢ 94
/% x/
/% cons(AsRBsC) returns 3 list C of lists x/
/% consisting of all consensus terms between the %X/
/X list A 3nd everw list contained in the list B %X/
/% of lists. The list C may contain empty lists. X/
/% x/
Z KRR A KKK KKK RO AR KA KKK KKK KKK KKK KKK KKK KKK KKK KKK/

cons(ClsYeX)S=LCl=,,X,

cons(CXiILIyYyCMiL1I)i-testconsl(XsYrsYs»Z)y»
(comrare(=sZyL])rcons(LyY,yCMILL1)s !}
compare(=yZy[L1])s!scoma(LyYyCMIL1I)}
M=Zrcons(lL.rYsL1)),

cons(CXIL)syY»LZiIKI)i=cOons(LyYsLZiKI1),

114

ZRRRKAORKAKRKKKEKKKKNKRKKK KK KKK KKK KK KKK KKK KKK K KK KKK/

/% x/
/% testconsl(AsBsCr»D) tests for a3 literal in x/
/% opposition between the list A and C. D is thex/
/% returned consensus term. B and C are x/
/% are identical when testconsl is oridginally x/

/% called:. If no literal in oepsosition is founds%x/
/% D is set to the empty list., If a3 literal in %X/

/% orposition is found testcons2(VsWsXs»YrZ) x/
/% is called. x/
/%X x/

ZRRHRKRAK KRR AR KKK KRR KK KKK KK KRKKR KK KKK KK KKK KKK KKK KK/

testconsl1l(CAICI»YsL1vLD).
testconsl(CAICIyY»[BID]I» X)) -sublist(CBISCAICI)y
testconsi(LAICI»YsDsX).
testconsl(CAICIsY»LBID]»X)t=ned(BsG)
sublist(LG1sCAICT)y
testcons2(LAICI»Ys»DsLBs»GIr»X) .,
testconsl(CAICI,YsLRBIDIsX)¢~testconsl(LAICIyYsDIpX),

KKK K KK KKK K KK CAOK KK K K KK K KKK KK KKK KKK K KKK KRKKK K/
/7% x/
/% testcons2(AsBsCrDsE) tests foar 3 second x/
/% literal in oprosition between list 4 and C. x/
/% Lists A and B are the oridginal listss list D %/
/% contains the first literal in orrosition and X/

/%X its comrlementy and list E contains the X/
/X consensus term. If 3 second literal in x/
/7% orposition is Pound » E is the empty list. x/
/X x/

ZRKRIKRKAKAKARKKAAR KRR KKK K RKK KR KKK KKK KKKK KK KKK KRKKK/

testecons2(CAICI»YsLIsLB»GIYLZ:IKI) -
formitl(CAICIsYICRsGIsL2iIK1),

testecons2(LAICIyYrLE!LI»CByGlrX)S=ned(EsF)y
sublist(CFIyCAICI) L] =,.X,

testcons2(LAICI»YsCEILI»CRBYyGIsCZiKI) ¢~
testcons2(LAICIsYsLyCByGI»LCZ:iKI),

/RKKKKAKKKKKKKKKKRKKKKKKKRKEKRKKKKRKKKRRKKKKRKRKXKKK/

/% x/
/% formiti(AyBsC»D) pPlaces all non—-oeeosition x/
/% literals in list B into the consensus list D. %X/
/% List C contains the oprosition literal and x/
/%X its complement. x/
/% x/

/RRREKKXEKKKKKRREKKRKKKKKKREKEKKRKKKKK KKK KKK KKKK/

et nienn pctiee e -

115

formiti(CAICIILI»[BsGIPEZIK])S~,
formit2(LAICI»CBsG1,LZIK]),
formit1(CAICI»EDIEIsLCByGIvLZIK]) ¢~B=D>»
tormiti(CAICI1sEyLBrGI/LZiIKD),
formit1(CAICI+LDIEIsLBsGIPLZiKI)¢~
sublist(LDB1+CAICT)>»
formitl(CAICIsEyCByGI,LZIKD).
formit1(CAICIsEDIEI»LByGIsCDIKI) S,
formiti(CAICIIE»LBr»GI,K) .,

ZRAKAK KA AR KA KKK A KRN KN AR AR KA K KA KKK KKK K/

/X x/
/% formit2(AyByCyl) rplaces all non-aprosition x/
/% literals of list A into the consensus list C. X/
/7% List B contains the orrosition literal and x/
/% its comprlement. x/
/% x/

/REREEKRKEKKEKKRKKKRKKKKEKKRKKEK KKK KKK KKK KKKKRKKKKKKK/
formit2(CI»CByG1sL1).
formit2(LAICIsLBsGlsX)I-G=Ayformit3(CrX).
formit2(LAICIsLBrGI»yLAIKI):~fOormit2(CrCRyGI»K) .

ZREKRERRKRKKREKKKEKKKEKEKKRKKKRKKKKRKKKRKRKKKKKR KKK/

/7% x/
/% formit3(ArB) sets the tail of A of 3 list to %/
/% be the list B. X/
/% x/

7 KRR AR K A K KK K 3K KK KKK e K K KK A K KK KK oK K KK KKk KKK KKK/
formit3(C»C).

ZEREEKKKKEKKKKKKRKKKKKKKKKKKKKKKKKRKRRKKR KKK KKRKKKK/

/% x/
/% parse(Z) returns Z a ligt of list from a x/
/X SOFP formula. X/
/% x/

ZHRERRKRKK KKK KKRKK KKK AR K KKKK KKK KKK KR RKERK KK KKK/

rarse(Z) —=-> term(X)r»"+"srestrarse(XrZ).
rarse{LZ])-->term(2).

ZRXRKRKEEKKRRKKAEKAREKR KRR KRR KKKRKKE K KKKKKKKKRREK/

/% x/
/% term(Z) converts a3 term in the SOP formula x/
/% into a list . x/
/% x/

ZXREEARRIREK KKK RKEAK KRR KK KKK RKRKRKRKERKKRKRKKKKRKK S/

116 : |

term(Z) ~=> delimrtoken(X)rdelimrresterm(XsZ)»!.

Vg 2 2233333233883 320333083333 832238 8333383433 % 94

/% x/
! /% delim removes the following sumbols from the %/
1 /% list created by term(Z)yr blankss &2 +r vy (9).%/
‘ /% X/

E ; /KA K 00K 0030 K K K K K K 3 0K 020 KK K K oK KK oK KKK Kok K/
i

I~ delim -=> *&"rdelims!.
i | delim == * *jdelims!. ;
; delim == "("sdelims!.

delim ~=> *)°®,delim»!.

delim ~-=> [ls!.,

f'a Z KRR KK AR K RKKIOR KKK KKK KR KKEK KKK KKEKKKKKKRKKKRKRKKK/

- /X x/
/% resterm(X»Y) sets the first element of list Y %/
/% to be the element Xs arnd calls term to find X/

/% the rest of the list Y. x/
. /%X *x/
2 Z BRI OK KK K KK KKK K AR IR KK KKK KKK KK KKK RKK KKK KK KKKK/

- resterm(XsCXIRI) —=> termiR).
g resterm(XsLX])) ==> (1,

ZREREXRERKKIKNKEKKRKREKKKKKKKKKKKRKKKKKKKKKKKKKKKRKRK KKK/

4 /% x/
| /% token(Y) returns an atom Y for a3 member of x/
/% ascii list. x/
/% x/

ZRKRKKRKAKK KK KKK KKK KKK KKKKR KK KKK R KK KKK K RAKKAK KKK/

= token(Y) == LCX1rL96Tr{name(YsLXs946])>»!.
| token(Y) ==> [XJr{name(YsLXI)oY\=='+'2y!,

ZRBHAAK AR AR K AR AR K AR AR K KRR AR KRR KKK KK KKK KK KKK K/

/X x/
/7% restrarse(XrY) sets the first element of the X/ '
/7% list of lists Y to be the list X» which x/
/% corresponds to first term of the SOF formula. %/
/% restrarse then calls rarse. x/
/% x/

ZRREKRERKRKRKKKRKRKRERKKKEKKREKKKKKRKKKKKRKKKKKKKRRRK/

restrarse(X»CXIR]) --> parse(R).
restrarse(XyCX1) == CJ.

e R MO TR NS T S o Tt e N S Sy O SRS

Vg 3 2222223 2 2033333303833 33333338332 2332323233333%% %4
/% x/
/% find_the_kews(A»BsC) inmuts a3 list A of x/
/% swumbols rerresenting all of the attributes x/
/% for 3 relation in @ databaser and @ list B X/
/% uwhich corresponds to the BCF of the functionalx/
/% desendencies of the relation. The list C x/
/% contains the list of kews for the relation. %/
/X x/
/7 00K 00 2K 00K K K K K K KK K XK K K K K K oK KK KoK K K KKK K K KK KKK/

find_the_keys([X1iL11yCXILI»CFIR1):~
bef1(CXILIPCXILIYCX1IL13YEZIKT)
deteraine(LZIKIsLFIR1).,

V222323322323 33 3233223330 338333833332833333¢¢833 24 ¥4
/% x/
/% determine(AsB) inruts the list A of lists x/
/% correspondingd to the Blake Canonical Form of X/
/X the functional dererdencies and list of X/
/% attribute suymbols for a relation., The list X/
/% of kheuws B is returned. x/
/% x/
Vg 3332230323332 332 33323833834 338323¢333 38383238322+ 9 94

determine(L]»L1).

determine(LZIKIsN)!~-(nedsin(ZsM)>»
N=[XiLlsX=Mrdetermine(K,L) 5}
determine(KsN)).

ZREKKKKRKKKKEK KK RKKKKKRKAK KKK KRR KK KKKKKKKKKKKKKKRK /
/X x/
/%X negdsin(AyB) inruts 3 list A of lists and x/
/% outrputs 3 list B of lists that contain all x/
/% the lists of A that have no comelemented x/
/% literals as members., The list B is a list of X/
/% kews of varwing length. x/
/7% x/
ZREERXEERKEKKEERLKKKKKKKKKKKRKEERKKKKEKKRRKKEK KKK/

nedgsin(CIsL1).
nedsin(CX{LIsCHITI)¢~-CXI=CM Is!rfail.
Nedsin(CXILIyLXITI) i ~nedsin(L,T),

Sl

IR DA, o RISVt oy

|
1
|
|
1
l
!
1
!

118

ZMBARI KA A AR AR KRR KKK KKK KKK KKK KKAKKRK KKK/
/% x/

/% write_kewsl(A)» write_kews(A)s write_kews2(B) X/
/7% outeut the kevys and a heading for them. x/
/%

x/
/7RREREREEXRKRKRKEKRKKKRKEKREKKKKKKKKKKKR KK KKK KRKKEKKK/

write_kewsl(CHIT)!~write(’'The keus are! ")
nlywrite_kews(CHITI).

write_keys(LI)i-nl.
write_keuws(LH!T])!-write_keus2(H)rwrite_ _keus(T),

e v b RPagp 7T ST T

pEpmap—

APPENDIX C

EXECUTIONS OF THE FD-KEY ALGORITHM

119

T ——

-

e —————

Ty

G m b
PR S PP SV O

121

+ture dbase

Catrblsclirdl].
La2yb3sclrdll.
Lalsb2yc2yd2].
Calsblrclrd21,
La2rt3rvcird].,
Calsb2rc2rdll.

PR PYTOlod

Prolodg-10 wversion 3

[Consultind ‘prolod.ini’ 1
i ?-~ restorel(cfd).

[closing all asctive files 1

L restore comrlete 1]

Jes

! P~ meinthing(Carbrcrgdl).

Time for functional derenderncy generatiorn is
4251ms

Time for bcf is

172ms.,

Time for kew search is 331 ms.

The keys arel

dca

db

“es
Hes

i ?- halt.
C Prolod execution halted 2

EXIT

+tume Prora
b=>a.
cia=>b.,
ba>c.

PRSPPI

122

+ture dbase
Csmithrsurgerysdrbd2r61.
fJonesspathologyr2rals»31.
LJionesrratholoduysrl1sc3»S].
Cevansranatomur»2yc3»101.
LJonesrratholodwr2sa3l1,71,
[evansrsurderyr3sa32»3].
Csmithranatoms+sSealeS5].

+Turn Prolod

FProlod-10 version 3

[Consulting ‘Frolog.ini’ 1
! ?~ restore(cfd).

L closind all active files 1

L restore comrlete 1]

¢es

{ P= mainthind(Lercrwerst]).
Time for functional derendency deneration is
17148ms

Time for bef is

15418ms.

Time for key search is 16090 ms.
The keus ares

rt

9t

~t

ct

ves
! ?- halt.
L Prolodg execution halted 1

EXIT

. K et - R e

123

+tyre rroea
tec=sp.
tiu=1r,
. t&"--::"’Po
¥ 2&C=p.,
. gs&r=ip,
F ci&r=>p,

[p——

k! tir=c,
g tar=ie,
o tay=ie.

! r&p=ic.

. rig=rC.
g PRSI
PREL=y,
#ir=iy,
C&t=::’s .
ci&r=ly,
r&t=ry.,
raL=2r,
"EY=r,
c&t=>r,.
cly=irp,
4&t=>r,.

124

+tere prora
az=b.
c=>+b&d.
b=:¢='e3f *
e=:xd.
=>a3&d.

+run Frolosg

Froleod-10 wversion 3

[Consulting ‘erolodg.ini’ 1
i ?- restare(cfd).

C closing a3ll asctive files 1]

L restore comrlete 1

wes
i\ 7~ solve_for_kegws(Larbhrcrdsesrfl).
Time for bef is

1432msg,

Time for kew search is 5971 ms.

The keds are!
c

wes
i 7= halv.

{ Frolodg execution halted 1]

EXIT

i
i
H
{
i
!
!

AT

(O A -
LS AR ¢
S

REFERENCES

Aho, A. V., Y. Sagiv, and J. D. Ullman,
"Efficient Optimization of a Class of Relational
Expressions,” ACM Izansaciions on Batabase
S8ystems, vol. 4, no. 4, pp. 435-454, December
1979.

Beeri, C., and P. A. Bernstein, "Computational
Problems Related to the Design of Normal Form
Relational Schemas," A€M Transactions on DRatabase
Systems, vol. 4, no. 1, pp. 30~-79, March 1979.
Beeri, C., P. A, Bernstein, and N. Goodman, "A
Sophisticate's Introduction To Database
Normalization Theory," Broceedings of Ihe 4th
Iinternationai Conference on Yery Large Patabases,
West Berlin, pp. 113-124, September 1978.
Bernstein, P. A., "Synthesizing Third Normal Form
Relations from Functional Dependencies," ACM
Zxapsactions on Ratabase Systems, vol. 1, no. 4,
pp. 277-298, December 1976.

Bernstein, P. A., and N. Goodman, "What Does
Boyce-Codd Normal Form Do?", Procedings 9f The
€th Intezpaiionail Conference on ¥Yery Lazge
Databases, pp. 245-259, 1980.

125

10.

11.

12,

126

Blake, A., "Canonical expressions in Boolean
algebra,"” Dissertation, University of Chicago,
Dep't. of Mathematics, August 1937, (cited in
(el).

Brown, F. M., EE 682 Lecture Notes, University of
Kentucky, 1980.

Brown, F. M., "Inferential Processor," Final
Report, 1980 USAF-SCEEE Summer Faculty Research
Program, August 1980,

Champine, G. A., "Current Trends in Data Base
Systems," €omputer, p. 27, May 1979.

Codd, E. F., "A Relational Model of Data for
Large Shared Data Banks," €ommunications of the
A€M, vol. 13, no. 6, pp. 377-387, June 1970.
Coelho, H., J. C. Cotta, and L. M. Pereira, How
Lo Soive It HWith PBrolog, 2nd ed., Laboratdrio
Nacional de Engenharia Civil, Lisboa, Portugal,
1980.

Date, C. J., &n Introduction Lo Ratabase Systens,
2nd ed., Reading, Mass.: Addison-Wesley

Publishing Company, Inc., 1977.

™ g

i

13.

14.

15,

16.

17.

ls.

127

Delobel, C., and R, G. Casey, "Decomposition of a
database and the thecry of Boolean switching
functions," IBM douznai pf Reseazxch and

Peveicpment, vol. 17, pp. 374-386, September
1973.

Fagin, R., "The Decomposition Versus The
Synthetic Approach to Relational Database
Design," Proceedings 9f The 3xd International
Conference on Very Large Databases, pp. 441-446,
October 1977.

Gotlieb, C. C., and Leo R. Gotlieb, DPata TIypes
and Structures, Englewood Cliffs, N. J.,:
Prentice-Hall, Inc., 1978.

Rohavi, 2., Switching and finite Automata Theory,
2nd ed., New York, N, Y.,: McGraw-Hill Book
Company, 1978.

Ling, Tok-Wang, F. W, Tompa, and T. Kameda, "An
Improved Third Normal Form for Relational
Databases," ACM Iransactions on Ratabase Systsms,
vol. 6, no. 2, pp. 329-346, June 1981.

Martin, James, Somputer Rata-base Organization,
Englewood Cliffs, N. J.: Prentice-Hall, Inc.,
1975,

19,

20,

21,

22,

23.

128

Nicolas, J. M., "Mutual Dependencies and Some
Results on Undecomposable Relations,"
Exoceedings of Ihe 4th Interpational SConference
on ¥Yery Larxge Ratabases, West Berlin, pp. 360-
367, September 1978.

Pereira, L. M., F. Pereira, and D, H. D, Warren,
"User's Guide to DECsystem 10 PROLOG," 1978.
Sagiv. Y., C. Delobel, D. S. Parker, and R.
Fagin, "An Equivalence Between Relational
Database Dependencies and a Subclass of
Propositional Logic,"” To appear in gouznal of
ACN.

Warren, D. H. D., "Implementing PROLOG~Compiling
Predicate Logic Programs," vol. 1 & 2-DAI,

Research report no. 39, University of Edinburgh,

1977, (cited in [11]).
Wiederhold, G. 0., Patabase Design. New York, N.
Y.: McGraw-Hill Book Company, 1977.

i

